通信算法之六:通信系统算法设计、链路理论预算、与实际链路运算

1、 通信系统,链路理论预算

[C/ I] = [Eb/No] + [R] +[log2M] - [log2SF]

2、通信系统,链路实际预算

信道环境: AWGN

SNR

BER

<详细资料,及相应MATLAB代码,咨询qq:1279682290 >

时间: 2024-10-10 04:44:38

通信算法之六:通信系统算法设计、链路理论预算、与实际链路运算的相关文章

普林斯顿公开课 算法1-5:算法理论

本节主要讲解的是算法的复杂度. 算法性能 算法的性能分为三种: 最佳情况:计算时间最短的情况 最差情况:计算时间最长的情况 平均情况:随机输入的期望开销 以二分查找为例 最佳情况是1,因为第一次就有可能找到需要找的整数. 最差情况是logN 平均情况是logN 算法复杂度 算法复杂度用于定义问题的难度,另外也有助于开发最优化的算法,算法复杂度可以通过分析最坏情况来减少输入数据对算法性能的影响. 为了简化问题难度的表示方法,算法复杂度减少了算法分析的细节,忽略常数系数. 最优算法 所谓的最佳算法就

java数据结构与算法之双链表设计与实现

转载请注明出处(万分感谢!): http://blog.csdn.net/javazejian/article/details/53047590 出自[zejian的博客] 关联文章: 关联文章: java数据结构与算法之顺序表与链表设计与实现分析 java数据结构与算法之双链表设计与实现 java数据结构与算法之改良顺序表与双链表类似ArrayList和LinkedList(带Iterator迭代器与fast-fail机制) ??上一篇文章分析顺序表和单链表,本篇就接着上篇继续聊链表,在单链表

3、贪心算法的原理与设计

贪心算法的原理与设计 贪心算法的设计步骤 1.将最优化问题转化为这样的形式:对其做出一次选择后,只剩下一个子问题要求解. 这个问题可以引用前面得到的活动选择问题进行说明 ,如在活动选择问题中,设Aij 代表的是活动ai?  结束后开始,且在aj结束之前进的一个子问题,于是 Aij=Aik+ak+Akj                      于我们将区间[i,j]活动的安排就变成了两个子区间[i,k]和[k,j]的优化问题,这问题进行了变化. 但是如果我们如果采用贪心策略,先对活动的结束时间进

017-Prim算法-贪心-《算法设计技巧与分析》M.H.A学习笔记

基本思路: 定义结点集合U, V (U表示已经选择加入MST的结点集合,V表示未选) 1. 任选一个结点加入U 2. 选择一条边权最小的边,他的两个结点分别属于U, V,并把属于V的那个结点加入U 3. 重复执行2直到V空 伪代码: C++代码: int g[mnx][mnx]; int n, m; int d[mnx]; // 朴素 prim, 复杂度O(|V|^2) |V|:点数, |E|:边数 int prim() { memset(d, 0x3f, sizeof d); //初始化 in

【先进的算法】Lasvegas算法3SAT问题(C++实现代码)

转载请注明出处:http://blog.csdn.net/zhoubin1992/article/details/46469557 1.SAT问题描写叙述 命题逻辑中合取范式 (CNF) 的可满足性问题 (SAT)是当代理论计算机科学的核心问题, 是一典型的NP 全然问题.在定义可满足性问题SAT之前.先引进一些逻辑符号. 一个 SAT 问题是指: 对于给定的 CNF 是否存在一组关于命题变元的真值指派使得A 为真. 显然, 假设A 为真, 则 CNF 的每一个子句中必有一个命题变元为 1 (真

分布式一致性算法:Raft 算法

Raft 算法是可以用来替代 Paxos 算法的分布式一致性算法,而且 raft 算法比 Paxos 算法更易懂且更容易实现.本文对 raft 论文进行翻译,希望能有助于读者更方便地理解 raft 的思想.如果对 Paxos 算法感兴趣,可以看我的另一篇文章:分布式系列文章--Paxos算法原理与推导 摘要Raft 是用来管理复制日志(replicated log)的一致性协议.它跟 multi-Paxos 作用相同,效率也相当,但是它的组织结构跟 Paxos 不同.这使得 Raft 比 Pax

什么是算法,学习算法有什么用

什么是算法 任何一个问题的解决方案都并非是凭空出现的,解决一个问题都需要选择一个合适的方法,并在此方法的引导下完成一系列的解答步骤,最终将问题转换为结果状态,对于计算机来说,这样的方法就是算法. 算法有很多种分类,可以是一系列的数学计算,也可以是一系列的操作步骤,总之,它存在的意义就是为了有针对性地解决问题,之所以强调针对性解决问题,是因为这个世界上还没有一种可以解决一切的万能算法,每个问题都有它独特的一面. 而对于这些特殊的需求,于是在这行业中出现了新的一批人,他们负责设计解决各种问题的算法.

五大常用算法----贪心、动态规划、分支限界、分治算法和回溯算法

五大常用算法之一:贪心算法 所谓贪心算法是指,在对问题求解时,总是做出在当前看来是最好的选择.也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解. 贪心算法没有固定的算法框架,算法设计的关键是贪心策略的选择.必须注意的是,贪心算法不是对所有问题都能得到整体最优解,选择的贪心策略必须具备无后效性,即某个状态以后的过程不会影响以前的状态,只与当前状态有关. 所以对所采用的贪心策略一定要仔细分析其是否满足无后效性. 五大常用算法之二:动态规划算法 五大常用算法之三:分支限界算法

算法学习——分治算法

这是从网上查到的概念资料,先收来~ 一.基本概念 在计算机科学中,分治法是一种很重要的算法.字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并.这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变换)…… 任何一个可以用计算机求解的问题所需的计算时间都与其规模有关.问题的规模越小,越容易直接求解,解题所需的计算时间也越少.例如,对于n个