决策树及R语言实现

  • 决策树是什么

决策树是基于树结构来进行决策,这恰是人类在面临决策问题时一种很自然的处理机制。例如,我们要对“这是好瓜吗?”这样的问题进行决策时,通常会进行一系列的判断或“子决策”:我们先看“它是什么颜色?”,如果是“青绿色”,则我们再看“它的根蒂是什么形态?”,如果是“蜷缩”,我们再判断“它敲起来是什么声音?”,最后我们得出决策:这是一个好瓜。这个决策如图所示:

  • 决策树能做什么

决策树能实现对数据的探索,能对数据轮廓进行描述,能进行预测和分类,了解哪些变量最重要

  • 决策树基本流程

  • 几种分列准则

一 信息增益

二 增益率

三 基尼系数

  • 停止条件

1.如果节点中所有观测属于一类。
2.如果该节点中所有观测的属性取值一致。
3.如果树的深度达到设定的阈值。
4.如果该节点所含观测值小于设定的父节点应含观测数的阈值。
5.如果该节点的子节点所含观测数将小于设定的阈值。
6.如果没有属性能满足设定的分裂准则的阈值。

时间: 2024-12-23 02:12:05

决策树及R语言实现的相关文章

机器学习算法的R语言实现(二):决策树算法

1.介绍 ?决策树(decision tree)是一种有监督的机器学习算法,是一个分类算法.在给定训练集的条件下,生成一个自顶而下的决策树,树的根为起点,树的叶子为样本的分类,从根到叶子的路径就是一个样本进行分类的过程. ?下图为一个决策树的例子,见http://zh.wikipedia.org/wiki/%E5%86%B3%E7%AD%96%E6%A0%91 ? 可见,决策树上的判断节点是对某一个属性进行判断,生成的路径数量为该属性可能的取值,最终到叶子节点时,就完成一个分类(或预测).决策树

R语言︱决策树族——随机森林算法

笔者寄语:有一篇<有监督学习选择深度学习还是随机森林或支持向量机?>(作者Bio:SebastianRaschka)中提到,在日常机器学习工作或学习中,当我们遇到有监督学习相关问题时,不妨考虑下先用简单的假设空间(简单模型集合),例如线性模型逻辑回归.若效果不好,也即并没达到你的预期或评判效果基准时,再进行下换其他更复杂模型来实验. ---------------------------------------------- 一.随机森林理论介绍 1.1 优缺点 优点. (1)不必担心过度拟合

机器学习算法的R语言实现(二):决策树

1.介绍 ?决策树(decision tree)是一种有监督的机器学习算法,是一个分类算法.在给定训练集的条件下,生成一个自顶而下的决策树,树的根为起点,树的叶子为样本的分类,从根到叶子的路径就是一个样本进行分类的过程. ?下图为一个决策树的例子,见http://zh.wikipedia.org/wiki/%E5%86%B3%E7%AD%96%E6%A0%91 ? 可见,决策树上的判断节点是对某一个属性进行判断,生成的路径数量为该属性可能的取值,最终到叶子节点时,就完成一个分类(或预测).决策树

R语言数据挖掘 — 决策树直观绘图

R语言数据挖掘 - 决策树直观绘图 1 前言 今天发现一个特别漂亮的决策树绘图方法,特此记录下来,作图工具是R语言,方法特别简单,图形直观美丽大方让我眼界大开. 2 安装包准备 绘制这些漂亮的图需要安装下面的包: library(rpart) library(rattle) library(rpart.plot) library(RColorBrewer) 上面是加载语言,这些包都要 install.packages 安装 3 测试代码 model <- rpart(Species ~ Sepa

R语言基于树的方法:决策树,随机森林,套袋Bagging,增强树

原文链接:http://tecdat.cn/?p=9859 概观 本文是有关  基于树的  回归和分类方法的.用于分割预测变量空间的分割规则可以汇总在树中,因此通常称为  决策树  方法. 树方法简单易懂,但对于解释却非常有用,但就预测准确性而言,它们通常无法与最佳监督学习方法竞争.因此,我们还介绍了装袋,随机森林和增强.这些示例中的每一个都涉及产生多个树,然后将其合并以产生单个共识预测.我们看到,合并大量的树可以大大提高预测准确性,但代价是损失解释能力. 决策树可以应用于回归和分类问题.我们将

R语言数据挖掘实战系列(2)

二.R语言简介 R语言是一种为统计计算和图形显示而设计的语言环境,具有免费.多平台支持,同时可以从各种类型的数据源中导入数据,具有较高的开放性以及高水准的制图功能.R是一个体系庞大的应用软件,主要包括核心的R标准包和各专业领域的其他包.R在数据分析.数据挖掘领域具有特别优势. R安装 R可在其主页(https://www.r-project.org/)上获得,根据所选择的平台进行下载安装.安装完成之后启动R.为了方便使用R,可使用免费的图形界面编辑器RStudio,可从https://www.r

[译]用R语言做挖掘数据《七》

时间序列与数据挖掘 一.实验说明 1. 环境登录 无需密码自动登录,系统用户名shiyanlou,密码shiyanlou 2. 环境介绍 本实验环境采用带桌面的Ubuntu Linux环境,实验中会用到: 1. LX终端(LXTerminal): Linux命令行终端,打开后会进入Bash环境,可以使用Linux命令2. GVim:非常好用的编辑器,最简单的用法可以参考课程Vim编辑器3. R:在命令行输入‘R’进入交互式环境,下面的代码都是在交互式环境运行4. 数据:在命令行终端输入以下命令:

用R语言做挖掘数据《三》

决策树和随机森林 一.实验说明 1. 环境登录 无需密码自动登录,系统用户名shiyanlou,密码shiyanlou 2. 环境介绍 本实验环境采用带桌面的Ubuntu Linux环境,实验中会用到程序: 1. LX终端(LXTerminal): Linux命令行终端,打开后会进入Bash环境,可以使用Linux命令2. GVim:非常好用的编辑器,最简单的用法可以参考课程Vim编辑器.3. R:在命令行终端输入‘R’,进入R的交互式环境,下面的代码都是在交互式环境运行. 3. 环境使用 使用

R语言︱异常值检验、离群点分析、异常值处理

在数据挖掘的过程中,数据预处理占到了整个过程的60% 脏数据:指一般不符合要求,以及不能直接进行相应分析的数据 脏数据包括:缺失值.异常值.不一致的值.重复数据及含有特殊符号(如#.¥.*)的数据 数据清洗:删除原始数据集中的无关数据.重复数据.平滑噪声数据.处理缺失值.异常值等 缺失值处理:删除记录.数据插补和不处理 主要用到VIM和mice包 install.packages(c("VIM","mice")) 1.处理缺失值的步骤 步骤: (1)识别缺失数据: