Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5
Sample Output
Case 1: 14 1 4
Case 2: 7 1 6
用变量记录开头和结尾,然后从第一个不断累加到最后一个
在途中,不断更新和维护【最大连续子序和】和他的开头和结尾的下表,
如果临时的连续子序和小于零 就赋0 再累加下去。。。
#include<iostream> #include<algorithm> using namespace std; class M{ public: int a,b,sum; }; int x[100002]; int main(){ int t;cin>>t; for(int k=1;k<=t;k++){ if(k!=1)cout<<endl; int n;cin>>n; M t; t.a=1; t.b=1; t.sum=-1000; int ta=1; int sum=0; for(int i=1;i<=n;i++){ cin>>x[i]; sum+=x[i]; if(sum>t.sum){ t.a=ta; t.b=i; t.sum=sum; } if(sum<0){ sum=0; ta=i+1; } } cout<<"Case "<<k<<":"<<endl; cout<<t.sum<<" "<<t.a<<" "<<t.b<<endl; } return 0; }