NYOJ 461

Fibonacci数列(四)

描述
 数学神童小明终于把0到100000000的Fibonacci数列(f[0]=0,f[1]=1;f[i] = f[i-1]+f[i-2](i>=2))的值全部给背了下来。
接下来,CodeStar决定要考考他,于是每问他一个数字,他就要把答案说出来,不过有的数字太长了。所以规定超过4位的只要说出前4位(高4位)就可以了,可是CodeStar自己又记不住。于是他决定编写一个程序来测验小明说的是否正确。
输入
输入若干数字n(0 <= n <= 100000000),每个数字一行。读到文件尾结束。
输出
输出f[n]的前4个数字(若不足4个数字,就全部输出)。
样例输入
0
1
2
3
4
5
35
36
37
38
39
40
样例输出
0
1
1
2
3
5
9227
1493
2415
3908
6324
1023

这道题首先考虑如何产生前4位:

先看对数的性质,logabc=c*logab ,loga(b*c)=logab+logac;假设给出一个数10234432,
那么log10(10234432)=log10(1.0234432*107)【用科学记数法表示这个数】=log10(1.0234432)+7;
log10(1.0234432)就是log10(10234432)的小数部分.
log10(1.0234432)=0.010063744(取对数所产生的数一定是个小数)
再取一次幂:10^0.010063744=1.023443198,然后减去整数部分,剩下的就是小数部分,让取前4位,只需要将小数部分*1000就好了。

然后根据数学知识,有斐波那契数列的通项公式:

当然,这样是不够的,需要进一步加工。

log10f(n)=n*log10((1+√5)/2)-log10√5+log10(1-((1-√5)/(1+√5))n)  红色的部分随着n的增大快速的就趋近余0,是高阶无穷小. 可以忽略。

所以:log10f(n) ≈n*log10((1+√5)/2)-log10√5

 1 #include<iostream>
 2 #include<stdio.h>
 3 #include<cmath>
 4 using namespace std;
 5 int main(){
 6     int n,i,a[25];
 7     double x,y,z,d;
 8     a[0]=0;
 9     a[1]=1;
10     for(i=0;i<19;i++)
11         a[i+2]=a[i+1]+a[i];
12
13     while(scanf("%d",&n)!=EOF){
14         if(n<=20)
15             cout<<a[n]<<endl;
16         else{
17             x=( log( ( 1.0+sqrt(5.0) ) /2.0 ) / log(10.0) )*n;
18             y=( 0.5*log( 5.0 ) )/log(10.0);
19             z=(x-y)-floor(x-y);                  //得到log f(n)的小数部分
20             d=1000*pow(10.0,z );
21             cout<<floor(d)<<endl;                 //取整数
22
23         }
24     }
25     return 0;
26 }
时间: 2024-10-02 19:44:40

NYOJ 461的相关文章

NYOJ 461-Fibonacci数列(四)(求斐波那契数列前4位)

题目地址:NYOJ 461 思路:斐波那契数列的通项公式为 然后下一步考虑如何产生前4位: 先看对数的性质,loga(b^c)=c*loga(b),loga(b*c)=loga(b)+loga(c);假设给出一个数10234432, 那么log10(10234432)=log10(1.0234432*10^7)[用科学记数法表示这个数]=log10(1.0234432)+7; log10(1.0234432)就是log10(10234432)的小数部分. log10(1.0234432)=0.0

NYOJ 237 游戏高手的烦恼 &amp;&amp; POJ3041-Asteroids ( 二分图的最大匹配 )

链接: NYOJ 237  游戏高手的烦恼:click here~~ POJ  3041 Asteroids           :click here~~ 题意: 两题一样,翻译不同而已. 有一位传说级游戏高手,在闲暇时间里玩起了一个小游戏,游戏中,一个n*n的方块形区域里有许多敌人,玩家可以使用炸弹炸掉某一行或者某一列的所有敌人.他是种玩什么游戏都想玩得很优秀的人,所以,他决定,使用尽可能少的炸弹炸掉所有的敌人. 现在给你一个游戏的状态,请你帮助他判断最少需要多少个炸弹才能炸掉所有的敌人吧.

NYOJ 49 开心的小明

开心的小明 时间限制:1000 ms  |  内存限制:65535 KB 难度:4 描述 小明今天很开心,家里购置的新房就要领钥匙了,新房里有一间他自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:"你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N 元钱就行".今天一早小明就开始做预算,但是他想买的东西太多了,肯定会超过妈妈限定的N 元.于是,他把每件物品规定了一个重要度,分为5 等:用整数1~5 表示,第5 等最重要.他还从因特网上查到了每件物品的价格(都是整数元).

NYOJ 106 背包问题

背包问题 时间限制:3000 ms  |  内存限制:65535 KB 难度:3 描述 现在有很多物品(它们是可以分割的),我们知道它们每个物品的单位重量的价值v和重量w(1<=v,w<=10):如果给你一个背包它能容纳的重量为m(10<=m<=20),你所要做的就是把物品装到背包里,使背包里的物品的价值总和最大. 输入 第一行输入一个正整数n(1<=n<=5),表示有n组测试数据: 随后有n测试数据,每组测试数据的第一行有两个正整数s,m(1<=s<=10

NYOJ 289 苹果

苹果 时间限制:3000 ms  |  内存限制:65535 KB 难度:3 描述 ctest有n个苹果,要将它放入容量为v的背包.给出第i个苹果的大小和价钱,求出能放入背包的苹果的总价钱最大值. 输入 有多组测试数据,每组测试数据第一行为2个正整数,分别代表苹果的个数n和背包的容量v,n.v同时为0时结束测试,此时不输出.接下来的n行,每行2个正整数,用空格隔开,分别代表苹果的大小c和价钱w.所有输入数字的范围大于等于0,小于等于1000. 输出 对每组测试数据输出一个整数,代表能放入背包的苹

nyoj 括号匹配

这个方程有两种形式,本文采用 if(s[i]=s[j]) dp[i][j]=d[i-1][j-1] dp[i][j]=min(dp[i][k]+dp[k+1][j],dp[i][j]) (i=<k<j) 其实与另一种方法比较:根据j的所有匹配情况取最小值 1.i到j无匹配,取为dp[i][j-1]+1 2.列举所有匹配情况 dp[i][k-1]+dp[k+1][j] 取上述所有情况最小值 两者都能获得正确的结果. 同时两者的初始化为 dp[i][j]==1 if(i==j) 规划方向为:  

NYOJ 527 AC_mm玩dota

AC_mm玩dota 时间限制:1000 ms  |  内存限制:65535 KB 难度:2 描述 大家都知道AC_mm比较喜欢玩游戏,特别是擅长war3这款经典游戏.某天AC_mm来到了VS平台上 ,准备去虐菜鸟,正巧一个不小心将我们ACM队长虐了 ^_^,我们的队长这下可不高兴了,说要出一道难题让AC_mm难堪一下.题目描述是这样的,给一个正整数n,n在二进制表示的情况下(不含前导0和符号位)有a个1和b个0,求斐波拉契数列的第a*b项对1314520取模后的值ans. 注意(斐波拉契数列:

NYOJ 832 合并游戏

合并游戏 时间限制:1000 ms  |  内存限制:65535 KB 难度:4 描述 大家都知道Yougth除了热爱编程之外,他还有一个爱好就是喜欢玩.某天在河边玩耍的时候,他发现了一种神奇的石子,当把两个石子放在一起的时候,后一个石子会消失,而且会蹦出一定数量的金币,这可乐坏了Yougth,但是他想得到最多的金币,他该怎么做? 输入 首先一行,一个n(1<=n<=10),表示有n个石子.接下来n*n的一个矩阵,Aij表示第i个和第j个合并蹦出的金币值(小于10000,注意合并后j会消失).

nyoj 12 喷水装置(二)【贪心】+【区间完全覆盖覆盖】

题意:... 这道题就是区间问题三种中的区间完全覆盖问题,不懂的可以看我上一篇也是区间完全覆盖. 直接上代码: #include <stdio.h> #include <math.h> #include <algorithm> using std::sort; struct node{ double le, ri; }s[1005]; int cmp(node a, node b) { return a.le < b.le; } int main() { int