JVM基础(3)-多态性实现机制

一、方法解析

Class 文件的编译过程中不包含传统编译中的连接步骤,一切方法调用在 Class 文件里面存储的都只是符号引用,而不是方法在实际运行时内存布局中的入口地址。

因此,想要使用这些符号引用必须经过转换,转换为直接引用,即内存中一个地址,可以直接指向方法本身。但是,转换的时机随着方法不同而不同。

有些方法可以在编译时就确定,比如static的方法(工具方法),比如private的方法,比如final的方法,这些方法有一个特点就是可以在编译期就确定,这种方式被称为静态解析

但是有些方法就不一样,Java这门语言有个著名的特性被称为多态,举个例子,根据你new()对象的不同,调用的方法而不同,这种情况下就只能在运行期确定,这就称为动态连接

下面进行详细说明:

这个特性给 Java 带来了更强大的动态扩展能力,使得可以在类运行期间才能确定某些目标方法的直接引用,称为动态连接,也有一部分方法的符号引用在类加载阶段或第一次使用时转化为直接引用,这种转化称为静态解析。

静态解析成立的前提是:方法在程序真正执行前就有一个可确定的调用版本,并且这个方法的调用版本在运行期是不可改变的。换句话说,调用目标在编译器进行编译时就必须确定下来,这类方法的调用称为解析。

在 Java 语言中,符合“编译器可知,运行期不可变”这个要求的方法主要有静态方法和私有方法两大类,前者与类型直接关联,后者在外部不可被访问,这两种方法都不可能通过继承或别的方式重写出其他的版本,因此它们都适合在类加载阶段进行解析。

Java 虚拟机里共提供了四条方法调用字节指令,分别是:

  • invokestatic:调用静态方法。
  • invokespecial:调用实例构造器方法、私有方法和父类方法。
  • invokevirtual:调用所有的虚方法。
  • invokeinterface:调用接口方法,会在运行时再确定一个实现此接口的对象。

只要能被 invokestatic 和 invokespecial 指令调用的方法,都可以在解析阶段确定唯一的调用版本,符合这个条件的有静态方法、私有方法、实例构造器和父类方法四类,它们在类加载时就会把符号引用解析为该方法的直接引用。这些方法可以称为非虚方法(还包括 final 方法),与之相反,其他方法就称为虚方法(final 方法除外)。这里要特别说明下 final 方法,虽然调用 final 方法使用的是 invokevirtual 指令,但是由于它无法覆盖,没有其他版本,所以也无需对方发接收者进行多态选择。Java 语言规范中明确说明了 final 方法是一种非虚方法。

解析调用一定是个静态过程,在编译期间就完全确定,在类加载的解析阶段就会把涉及的符号引用转化为可确定的直接引用,不会延迟到运行期再去完成。而分派调用则可能是静态的也可能是动态的,根据分派依据的宗量数(方法的调用者和方法的参数统称为方法的宗量)又可分为单分派和多分派。两类分派方式两两组合便构成了静态单分派、静态多分派、动态单分派、动态多分派四种分派情况。

二、静态分派

所有依赖静态类型来定位方法执行版本的分派动作,都称为静态分派,静态分派的最典型应用就是多态性中的方法重载。静态分派发生在编译阶段,因此确定静态分配的动作实际上不是由虚拟机来执行的。下面通过一段方法重载的示例程序来更清晰地说明这种分派机制:

class Human{
}
class Man extends Human{
}
class Woman extends Human{
}  

public class StaticPai{  

    public void say(Human hum){
        System.out.println("I am human");
    }
    public void say(Man hum){
        System.out.println("I am man");
    }
    public void say(Woman hum){
        System.out.println("I am woman");
    }  

    public static void main(String[] args){
        Human man = new Man();
        Human woman = new Woman();
        StaticPai sp = new StaticPai();
        sp.say(man);
        sp.say(woman);
    }
}  

上面代码的执行结果如下:

 I am human
 I am human

以上结果的得出应该不难分析。在分析为什么会选择参数类型为 Human 的重载方法去执行之前,先看如下代码:

Human man = new Man();

我们把上面代码中的“Human”称为变量的静态类型,后面的“Man”称为变量的实际类型。

静态类型和实际类型在程序中都可以发生一些变化,区别是静态类型的变化仅仅在使用时发生,变量本身的静态类型不会被改变,并且最终的静态类型是在编译期可知的,而实际类型变化的结果在运行期才可确定。

回到上面的代码分析中,在调用 say()方法时,方法的调用者(回忆上面关于宗量的定义,方法的调用者属于宗量)都为 sp 的前提下,使用哪个重载版本,完全取决于传入参数的数量和数据类型(方法的参数也是数据宗量)。

代码中刻意定义了两个静态类型相同、实际类型不同的变量,可见编译器(不是虚拟机,因为如果是根据静态类型做出的判断,那么在编译期就确定了)在重载时是通过参数的静态类型而不是实际类型作为判定依据的。并且静态类型是编译期可知的,所以在编译阶段,javac 编译器就根据参数的静态类型决定使用哪个重载版本。这就是静态分派最典型的应用。

三、动态分派

动态分派与多态性的另一个重要体现——方法覆写有着很紧密的关系。向上转型后调用子类覆写的方法便是一个很好地说明动态分派的例子。这种情况很常见,就是一般的多态,因此这里不再用示例程序进行分析。很显然,在判断执行父类中的方法还是子类中覆盖的方法时,如果用静态类型来判断,那么无论怎么进行向上转型,都只会调用父类中的方法,但实际情况是,根据对父类实例化的子类的不同,调用的是不同子类中覆写的方法,很明显,这里是要根据变量的实际类型来分派方法的执行版本的。而实际类型的确定需要在程序运行时才能确定下来,这种在运行期根据实际类型确定方法执行版本的分派过程称为动态分派。

四、单分派和多分派

前面给出:方法的接受者(亦即方法的调用者)与方法的参数统称为方法的宗量。但分派是根据一个宗量对目标方法进行选择,多分派是根据多于一个宗量对目标方法进行选择。

为了方便理解,下面给出一段示例代码:

class Eat{
}
class Drink{
}  

class Father{
    public void doSomething(Eat arg){
        System.out.println("爸爸在吃饭");
    }
    public void doSomething(Drink arg){
        System.out.println("爸爸在喝水");
    }
}  

class Child extends Father{
    public void doSomething(Eat arg){
        System.out.println("儿子在吃饭");
    }
    public void doSomething(Drink arg){
        System.out.println("儿子在喝水");
    }
}  

public class SingleDoublePai{
    public static void main(String[] args){
        Father father = new Father();
        Father child = new Child();
        father.doSomething(new Eat());
        child.doSomething(new Drink());
    }
}  

运行结果应该很容易预测到,如下:

爸爸在吃饭
儿子在喝水

我们首先来看编译阶段编译器的选择过程,即静态分派过程。

这时候选择目标方法的依据有两点:一是方法的接受者(即调用者)的静态类型是 Father 还是 Child,二是方法参数类型是 Eat 还是 Drink。因为是根据两个变量进行选择,所以 Java 语言的静态分派属于多分派类型。

再来看运行阶段虚拟机的选择,即动态分派过程。由于编译期已经了确定了目标方法的参数类型(编译期根据参数的静态类型进行静态分派),因此唯一可以影响到虚拟机选择的因素只有此方法的接受者的实际类型是 Father 还是 Child。因为只有一个宗量作为选择依据,所以 Java 语言的动态分派属于单分派类型。

根据以上论证,我们可以总结如下:目前的 Java 语言(JDK1.6)是一门静态多分派、动态单分派的语言。

时间: 2024-10-14 19:37:17

JVM基础(3)-多态性实现机制的相关文章

JVM基础(5)-垃圾回收机制

一.对象引用的类型 Java 中的垃圾回收一般是在 Java 堆中进行,因为堆中几乎存放了 Java 中所有的对象实例.谈到 Java 堆中的垃圾回收,自然要谈到引用.在 JDK1.2 之前,Java 中的引用定义很很纯粹:如果 reference 类型的数据中存储的数值代表的是另外一块内存的起始地址,就称这块内存代表着一个引用.但在 JDK1.2 之后,Java 对引用的概念进行了扩充,将其分为强引用(Strong Reference).软引用(Soft Reference).弱引用(Weak

Java性能优化之JVM GC(垃圾回收机制)

Java的性能优化,整理出一篇文章,供以后温故知新. JVM GC(垃圾回收机制) 在学习Java GC 之前,我们需要记住一个单词:stop-the-world .它会在任何一种GC算法中发生.stop-the-world 意味着JVM因为需要执行GC而停止了应用程序的执行.当stop-the-world 发生时,除GC所需的线程外,所有的线程都进入等待状态,直到GC任务完成.GC优化很多时候就是减少stop-the-world 的发生. JVM GC回收哪个区域内的垃圾? 需要注意的是,JV

【java基础】Java反射机制

一.预先需要掌握的知识(java虚拟机)  1)java虚拟机的方法区:  java虚拟机有一个运行时数据区,这个数据区又被分为方法区,堆区和栈区,我们这里需要了解的主要是方法区.方法区的主要作用是存储被装载的类 的类型信息,当java虚拟机装载某个类型的时候,需要类装载器定位相应的class文件,然后将其读入到java虚拟机中,紧接着虚拟机提取class 中的类型信息,将这些信息存储到方法区中.这些信息主要包括: 这个类型的全限定名 这个类型的直接超类的全限定名 这个类型是类类型还是接口类型

JVM内存管理及GC机制

一.概述 JavaGC(Garbage Collection,垃圾收集,垃圾回收)机制,是Java与C++/C的主要区别之一,作为Java开发者,一般不需要专门编写内存回收和垃圾清理代码,对内存泄露和溢出的问题,也不需要像C程序员那样战战兢兢.经过这么长时间的发展,javaGC机制已经日臻完善,几乎可以自动的为我们做绝大多数的事情. 虽然java不需要开发人员显示的分配和回收内存,这对开发人员确实降低了不少编程难度,但也可能带来一些副作用: 1. 有可能不知不觉浪费了很多内存 2. JVM花费过

【转载】Java性能优化之JVM GC(垃圾回收机制)

章来源:https://zhuanlan.zhihu.com/p/25539690 Java的性能优化,整理出一篇文章,供以后温故知新. JVM GC(垃圾回收机制) 在学习Java GC 之前,我们需要记住一个单词:stop-the-world .它会在任何一种GC算法中发生.stop-the-world 意味着JVM因为需要执行GC而停止了应用程序的执行.当stop-the-world 发生时,除GC所需的线程外,所有的线程都进入等待状态,直到GC任务完成.GC优化很多时候就是减少stop-

关于Java面试知识点解析——JVM基础篇

跳槽时时刻刻都在发生,但是我建议大家跳槽之前,先想清楚为什么要跳槽.切不可跟风,看到同事一个个都走了,自己也盲目的开始面试起来(期间也没有准备充分),到底是因为技术原因(影响自己的发展,偏移自己规划的轨迹),还是钱给少了,不受重视. 准备不充分的面试,完全是浪费时间,更是对自己的不负责(如果title很高,当我没说).今天给大家分享下 Java面试知识点解析--JVM基础篇 1)Java 是如何实现跨平台的? 注意:跨平台的是 Java 程序,而不是 JVM.JVM 是用 C/C++ 开发的,是

Java虚拟机 - 多态性实现机制

[深入Java虚拟机]之五:多态性实现机制--静态分派与动态分派 方法解析 Class文件的编译过程中不包含传统编译中的连接步骤,一切方法调用在Class文件里面存储的都只是符号引用,而不是方法在实际运行时内存布局中的入口地址.这个特性给Java带来了更强大的动态扩展能力,使得可以在类运行期间才能确定某些目标方法的直接引用,称为动态连接,也有一部分方法的符号引用在类加载阶段或第一次使用时转化为直接引用,这种转化称为静态解析.这在前面的"Java内存区域与内存溢出"一文中有提到. 静态解

C++——多态性实现机制

C++的多态性实现机制剖析 1. 多态性和虚函数 #include <iostream.h> class animal { public: void sleep() { cout<<"animal sleep"<<endl; } void breathe() { cout<<"animal breathe"<<endl; } }; class fish:public animal { public: voi

UVM基础之---------uvm factory机制register

factory机制的一大特点就是根据类的名字来创建类的实例. factory 机制中根据类名来创建类的实例所用到的技术:一是参数化的类,二是静态变量和静态函数.这两者是factory机制实现的根本所在. UVM 中有两大关键类,uvm_object 和 uvm_component.一个 uvm_object 在定义时一般要调用 uvm_object_utils 宏,而一个 uvm_component 在定义时要调用uvm_component_utils宏.factory所有的操作都通过这两个宏来