Problem Description
Given a positive integer N, you should output the most right digit of N^N.
Input
The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Output
For each test case, you should output the rightmost digit of N^N.
Sample Input
2
3
4
Sample Output
7 6
Hint
In the first case, 3 * 3 * 3 = 27, so the rightmost digit is 7. In the second case, 4 * 4 * 4 * 4 = 256, so the rightmost digit is 6.
最先想到的是一个一个算,但是由于数据范围太大,O(n^2)的时间复杂度对于n = 10亿时,10亿^10亿次乘法运算实在是不能忍受的。因此下面的程序超时(Time Limit Exceeded)。
#include<stdio.h> int main(void) { int cases, n, copy_n, result; scanf("%d", &cases); while(cases--) { scanf("%d", &n); copy_n = n; n = n%10; result = 1; while(copy_n--) { result = (result*n)%10; } printf("%d\n", result); } return 0; }
下面,快速幂一来就AC了:
#include<stdio.h> int my_power(int m, int n); // 求m的n次方的尾数 int main(void) { int cases, n; scanf("%d", &cases); while(cases--) { scanf("%d", &n); printf("%d\n", my_power(n, n)); } return 0; } int my_power(int m, int n) { m = m%10; if(n == 1) return m; if(n%2 == 0) return ( my_power(m*m, n/2) ) % 10; else return ( my_power(m*m, n/2)*m ) % 10; }
可以看到,快速幂的时间复杂度是O(logn),n = 10亿时,大约32次递归调用就能出结果,效率极大的提高了。
时间: 2024-12-20 21:23:14