Jacobi-Anger expansion

【转载请注明出处】http://www.cnblogs.com/mashiqi

2017/06/16

适合于自己的关于Jacobi-Anger expansion的推导方法,这里记下来,方便以后查阅。

现记住下面四个关系式:

\begin{align*}
& (1)~ |x-y|=|x| -\hat{x} \cdot y + \mathcal{O}\left(\frac{1}{|x|}\right), ~|x| \to +\infty. \\
& (2)~ \sum_{m=-n}^{n} Y_n^m(\hat{x})\overline{Y_n^m(\hat{y})} = \frac{2n+1}{4\pi} P_n(\cos\theta). \\
& (3)~ \Phi (x,y) \triangleq \frac{e^{ik|x-y|}}{4\pi|x-y|} = ik \sum_{n=-\infty}^{\infty}\sum_{m=-n}^{n} h_n^{(1)}(k|x|)Y_n^m(\hat{x}) j_n(k|y|)\overline{Y_n^m(\hat{y})}, \forall~ |x| > |y|. \\
&(4)~ h_n^{(1)}(t) = \frac{1}{i^{n+1}t} e^{it} \left\{1 + \mathcal{O}\left(\frac{1}{t}\right)\right\}, ~t \to +\infty.
\end{align*}

于是当$|x|$充分大时,我们可以得到

\begin{align*}
\frac{e^{ik|x-y|}}{4\pi|x-y|} & = \frac{e^{ik|x|}}{4\pi|x|} \left\{ e^{-ik\hat{x} \cdot y} + \mathcal{O}\left(\frac{1}{|x|}\right) \right\} \\
& = ik \sum_{n=-\infty}^{\infty}\sum_{m=-n}^{n} h_n^{(1)}(k|x|)Y_n^m(\hat{x}) j_n(k|y|)\overline{Y_n^m(\hat{y})} \\
& = ik \sum_{n=-\infty}^{\infty} \left\{ j_n(k|y|)h_n^{(1)}(k|x|) \left[ \sum_{m=-n}^{n} Y_n^m(\hat{x}) \overline{Y_n^m(\hat{y})} \right] \right\} \\
& = ik \sum_{n=-\infty}^{\infty} \left\{ j_n(k|y|)h_n^{(1)}(k|x|) \frac{2n+1}{4\pi} P_n(\cos\theta) \right\} \\
& = ik \sum_{n=-\infty}^{\infty} \frac{2n+1}{4\pi} j_n(k|y|) P_n(\cos\theta) h_n^{(1)}(k|x|) \\
& = ik \sum_{n=-\infty}^{\infty} \frac{2n+1}{4\pi} j_n(k|y|) P_n(\cos\theta) \frac{e^{ik|x|}}{i^{n+1}k|x|} \left\{1 + \mathcal{O}\left(\frac{1}{|x|}\right)\right\} \\
& = \frac{e^{ik|x|}}{4\pi |x|} \sum_{n=-\infty}^{\infty} \frac{2n+1}{i^n} j_n(k|y|) P_n(\cos\theta) \left\{1 + \mathcal{O}\left(\frac{1}{|x|}\right)\right\} \\
& = \frac{e^{ik|x|}}{4\pi |x|} \left\{ \sum_{n=-\infty}^{\infty} \frac{2n+1}{i^n} j_n(k|y|) P_n(\cos\theta) + \mathcal{O}\left(\frac{1}{|x|}\right)\right\}.
\end{align*}

于是$$e^{-ik\hat{x} \cdot y} = \sum_{n=-\infty}^{\infty} \frac{2n+1}{i^n} j_n(k|y|) P_n(\cos\theta).$$将$\hat{x}$换做$-d$,$y$换做$x$,可得:

\begin{align*}
e^{ikd \cdot x} & = \sum_{n=-\infty}^{\infty} \frac{2n+1}{i^n} j_n(k|x|) P_n(\cos(\pi-\theta)) \\
& = \sum_{n=-\infty}^{\infty} \frac{2n+1}{i^n} j_n(k|x|) (-1)^n P_n(\cos\theta) \\
& = \sum_{n=-\infty}^{\infty} i^n(2n+1) j_n(k|x|) P_n(\cos\theta).
\end{align*}

时间: 2024-11-15 03:14:03

Jacobi-Anger expansion的相关文章

bzoj1730 [Usaco2005 dec]Barn Expansion 牛棚扩张

1730: [Usaco2005 dec]Barn Expansion 牛棚扩张 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 134  Solved: 72[Submit][Status][Discuss] Description Farmer John has N (1 <= N <= 25,000) rectangular barns on his farm, all with sides parallel to the X and Y ax

java.lang.ArithmeticException: Non-terminating decimal expansion; no exact representable decimal result异常的解决方法

今天在写一个JAVA程序的时候出现了异常:java.lang.ArithmeticException: Non-terminating decimal expansion; no exact representable decimal result.发现报错的语句是: 1 foo.divide(bar)); 原来JAVA中如果用BigDecimal做除法的时候一定要在divide方法中传递第二个参数,定义精确到小数点后几位,否则在不整除的情况下,结果是无限循环小数时,就会抛出以上异常.解决方法:

Non-terminating decimal expansion; no exact representable decimal result(转)

Non-terminating decimal expansion; no exact representable decimal result - lopper的专栏 - 博客频道 - CSDN.NET http://blog.csdn.net/lopper/article/details/5314686 由于需要处理精度比较高的浮点数,所以弃用double类型,改用BigDecimal类来进行数值处理. 在加减乘时都没有出现问题,但是到除法运算时,提示了如下错误: 大概的意思是“无法结束的除

Project Euler 80:Square root digital expansion 平方根数字展开

Square root digital expansion It is well known that if the square root of a natural number is not an integer, then it is irrational. The decimal expansion of such square roots is infinite without any repeating pattern at all. The square root of two i

POJ 3168 Barn Expansion (几何+排序)

题目链接:POJ 3168 Barn Expansion 题意:抽象出来就是给出n个矩形的坐标是(左下角和右上角的坐标,矩形的边都是平行x,y轴),问有几个矩形和其他矩形没有接触(只存在边接触或者点接触,不存在有公共面积). 思路:把边分成两类,平行x轴和平行y轴.对边进行排序,然后for一遍判断是否有相交即可 AC代码: #include <stdio.h> #include <vector> #include <map> #include <set> #

Jacobi symbol(裸雅可比符号)

Jacobi symbol Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 625    Accepted Submission(s): 258 Problem Description Consider a prime number p and an integer a !≡ 0 (mod p). Then a is called a q

POJ 3358 Period of an Infinite Binary Expansion( 数论好题 + 欧拉定理 + 欧拉函数 )

POJ 3358 Period of an Infinite Binary Expansion( 数论好题 + 欧拉定理 + 欧拉函数 ) #include <cstdio> #include <cstring> #include <algorithm> #include <algorithm> using namespace std; typedef long long LL; LL fac[ 100000 ], pf; LL gcd( LL a, LL

uva 12627 - Erratic Expansion(递归求解)

递归的边界条件写的多了--没必要写呢么多的.. 不明白可共同探讨~ #include<cstdio> #include<iostream> #include<cmath> using namespace std; long long dp(int kk,int pos) { int n=kk;int temp=(int)pow(2,n); // printf("%d %d\n",kk,pos); if(kk==0&&pos==1) r

Protecting against XML Entity Expansion attacks

https://blogs.msdn.microsoft.com/tomholl/2009/05/21/protecting-against-xml-entity-expansion-attacks/ Tom Hollander May 21, 2009 One of the critical responsibilities of every developer and architect is to understand, and know how to prevent, as many k