求x个2011 相乘之后,最后y位的数字是多少? x<=10^6, 1<=y<=5. 数值超过long long,用取余 a*b%m=(a%m)*(b%m)%m #include<iostream>using namespace std;int main(){ int x,y,a,i=1,t=1,k=1; long long sum=1; cin>>x>>y; while(i<=y)
相传韩信才智过人,从不直接清点自己军队的人数,只要让士兵先后以三人一排.五人一排.七人一排地变换队形,而他每次只掠一眼队伍的排尾就知道总人数了. 输入三个非负整数a,b,c,表示每种队形的队尾人数(a<3,b<5,c<7),输出总人数的最小值(或报告无解).已知总人数不小于10,不超过100. 也就是说:现在有一对士兵,如果按3个人一组分组的话,最后会剩下a个人无法分组.如果按5个人一组分组的话,最后会剩下b个人无法分组:如果按7个人一组分组的话,最后会剩下c个人无法分组: #inc
1.<信息学奥赛一本通>(C++)版:★★★★★ 这本书,还有PASCAL版本的.但是呢,由于现在我们这儿大多数都是用C++的了,所以,要根据指导教师的教学内容,来选购特定的版本. 优点:全面介绍了信息学奥赛(普及组)阶段的编程技术,重点是,在配套光盘中(目录中可下载)有极其全面的测试数据,选手可以一题题地进行训练和测试,确保自己真实地掌握了相关的技能.作为起步阶段的奥赛培训而言,我目前没看到第二本能和他抗衡的教材.要是把这个教材所有的测试数据都过一遍,普及组复赛一等奖应该是有把握的. 缺点:
[问题描述] 这天晚上,约翰做了个奇怪的美梦.他拥有了分别分布在N座高高低低的山上的N个池塘,N座山连成一条直线,从左往右第i座山的高度是Hi.池塘中的鱼都是他请专家运用科学的方法专门养殖的,为了保护每个池塘的生态环境,他现在要在这N座山上建造若干个看护点.约翰是个很节约的人,在第i座山建造看护点的花费为Ci.假设在第i座山建造一个看护点,则往左或者往右第一座不比这座山低的山将挡住看护的视线.譬如说: {Hi} = {1 4 4 5 7 2}表示第一座山高度为1,第二座山高度为4... 如果在第
在看了Amber的<最小割模型在信息学竞赛中的应用>后感觉到了自己的智障-- 我还是按照目录来,其实第一个子目录中我收获最大的还是01分数规划的内容. 01分数规划:给定n个条件,在其中选取一些条件,使得要求的目标函数达到最值. 通俗一点说:给定两个数组,a[i]表示选取i的收益,b[i]表示选取i的代价.如果选取i,定义x[i]=1否则x[i]=0.每一个物品只有选或者不选两种方案,求一个选择方案使得R=sigma(a[i]*x[i])/sigma(b[i]*x[i])取得最值,即所有选择物
1. 设 $f(\al,\beta)$ 为线性空间 $V$ 上的非退化双线性函数, 试证: $$\bex \forall\ g\in V^*,\ \exists\ |\ \al\in V,\st f(\al,\beta)=g(\beta),\quad \forall\ \beta\in V. \eex$$ 证明: (1) 唯一性: 设 $\tilde\al$ 也适合题意, 则 $$\beex \bea &\quad f(\al,\beta)=f(\tilde\al,\beta),\quad \f
1. (1) 设 $f(x)$ 在 $[0,1]$ 上有界, 在 $x=1$ 处连续, 试求极限 $\dps{\vlm{n}n\int_0^1 x^{n-1}f(x)\rd x}$. (2) 计算以下渐近等式 $$\bex \int_0^1 \cfrac{x^{n-1}}{1+x}\rd x=\cfrac{a}{n}+\cfrac{b}{n^2}+o\sex{\cfrac{1}{n^2}}\quad(n\to\infty) \eex$$ 中的待定常数 $a,b$. 解答: (1) 由 $f$ 在
1. 设 $f,g$ 是 $[a,b]$ 上的连续函数. (1) 对 $1<p<q<\infty$, $\cfrac{1}{p}+\cfrac{1}{q}=1, a,b>0$, 试证: $$\bex ab\leq \cfrac{1}{p}a^p+\cfrac{1}{q}b^q. \eex$$ (2) 设 $\dps{\vsm{n}a_n}$ 为收敛的正项级数, 试证: $\dps{\vsm{n}a_n^{1-\frac{1}{n}}}$ 也收敛. (3) 对 $1\leq p\le
<算法艺术与信息学竞赛>这本书我详细看了1.1.1.2.1.3,之后就看得不是很懂了,所以还是把摘要写出来,方便让我知道到底能学到什么. 第一章 算法与数据结构 “数据结构+算法=程序设计” 从理论分析和实际应用两方面阐述了算法与数据结构的基本知识. 1.1 概括的叙述了算法.数据结构.以及计算理论的一些概念. 1.2从实例出发,概括的介绍了一些基本算法,包括美剧.贪心.递归.递推. 1.3介绍基本数据结构,包括线性表队列.栈.树.二叉树.以及图遍历与拓扑排序. 1.4介绍了一些实用数据结构,