朴素贝叶斯-Numpy-对数似然

《Machine Learning in Action》

为防止连续乘法时每个乘数过小,而导致的下溢出(太多很小的数相乘结果为0,或者不能正确分类)

训练:

def trainNB0(trainMatrix,trainCategory):
    numTrainDocs = len(trainMatrix)
    numWords = len(trainMatrix[0])
    pAbusive = sum(trainCategory)/float(numTrainDocs)
    p0Num = ones(numWords);p1Num = ones(numWords)#计算频数初始化为1
    p0Denom = 2.0;p1Denom = 2.0                  #即拉普拉斯平滑
    for i in range(numTrainDocs):
        if trainCategory[i]==1:
            p1Num += trainMatrix[i]
            p1Denom += sum(trainMatrix[i])
        else:
            p0Num += trainMatrix[i]
            p0Denom += sum(trainMatrix[i])
    p1Vect = log(p1Num/p1Denom)#注意
    p0Vect = log(p0Num/p0Denom)#注意
    return p0Vect,p1Vect,pAbusive#返回各类对应特征的条件概率向量
                                 #和各类的先验概率

分类:

def classifyNB(vec2Classify,p0Vec,p1Vec,pClass1):
    p1 = sum(vec2Classify * p1Vec) + log(pClass1)#注意
    p0 = sum(vec2Classify * p0Vec) + log(1-pClass1)#注意
    if p1 > p0:
        return 1
    else:
        return 0

def testingNB():#流程展示
    listOPosts,listClasses = loadDataSet()#加载数据
    myVocabList = createVocabList(listOPosts)#建立词汇表
    trainMat = []
    for postinDoc in listOPosts:
        trainMat.append(bagOfWord2VecMN(myVocabList,postinDoc))
    p0V,p1V,pAb = trainNB0(trainMat,listClasses)#训练
    #测试
    testEntry = [‘love‘,‘my‘,‘dalmation‘]
    thisDoc = bagOfWord2VecMN(myVocabList,testEntry)
    print testEntry,‘classified as: ‘,classifyNB(thisDoc,p0V,p1V,pAb)

注意:上述代码中标有注意的地方,是公式中概率连乘变成了对数概率相加。此举可以在数学上证明不会影响分类结果,且在实际计算中,避免了因概率因子远小于1而连乘造成的下溢出。  

时间: 2024-09-30 05:53:08

朴素贝叶斯-Numpy-对数似然的相关文章

基于朴素贝叶斯的内容推荐算法

论文出处: http://www.cs.utexas.edu/~ml/papers/libra-sigir-wkshp-99.pdf 引言 这篇文章里面将会详细介绍基于多项式贝叶斯的内容推荐算法的符号以及术语,公式推导以及核心思想,学习如何从文本分类的角度来实现物品推荐.详细了解算法过程后,你应该可以利用里面的公式来计算出某个用户对于单词级别的喜好强度列表(profile),根据这个强度大小来对其他物品(需先用该强度来对该物品做加权算出该物品的喜好强度)做一个推荐的排序,从而得到用户可能最喜欢的

机器学习之路--朴素贝叶斯

一,引言 前两章的KNN分类算法和决策树分类算法最终都是预测出实例的确定的分类结果,但是,有时候分类器会产生错误结果:本章要学的朴素贝叶斯分类算法则是给出一个最优的猜测结果,同时给出猜测的概率估计值. 1 准备知识:条件概率公式 相信学过概率论的同学对于概率论绝对不会陌生,如果一时觉得生疏,可以查阅相关资料,在这里主要是想贴出条件概率的计算公式: P(A|B)=P(A,B)/P(B)=P(B|A)*P(A)/P(B) 2 如何使用条件概率进行分类 假设这里要被分类的类别有两类,类c1和类c2,那

机器学习基础——让你一文学会朴素贝叶斯模型

今天这篇文章和大家聊聊朴素贝叶斯模型,这是机器学习领域非常经典的模型之一,而且非常简单,适合初学者入门. 朴素贝叶斯模型,顾名思义和贝叶斯定理肯定高度相关.之前我们在三扇门游戏的文章当中介绍过贝叶斯定理,我们先来简单回顾一下贝叶斯公式: \[P(A|B)=\frac{P(A)P(B|A)}{P(B)}\] 我们把\(P(A)\)和\(P(B)\)当做先验概率,那么贝叶斯公式就是通过先验和条件概率推算后验概率的公式.也就是寻果溯因,我们根据已经发生的事件去探究导致事件发生的原因.而朴素贝叶斯模型正

Stanford大学机器学习公开课(五):生成学习算法、高斯判别、朴素贝叶斯

(一)生成学习算法 在线性回归和Logistic回归这种类型的学习算法中我们探讨的模型都是p(y|x;θ),即给定x的情况探讨y的条件概率分布.如二分类问题,不管是感知器算法还是逻辑回归算法,都是在解空间中寻找一条直线从而把两种类别的样例分开,对于新的样例,只要判断在直线的哪一侧即可:这种直接对问题求解的方法可以称为判别学习方法. 而生成学习算法则是对两个类别分别进行建模,用新的样例去匹配两个模板,匹配度较高的作为新样例的类别,比如分辨大象(y=1)和狗(y=0),首先,观察大象,然后建立一个大

《机器学习实战》学习笔记:基于朴素贝叶斯的分类方法

概率是许多机器学习算法的基础,在前面生成决策树的过程中使用了一小部分关于概率的知识,即统计特征在数据集中取某个特定值的次数,然后除以数据集的实例总数,得到特征取该值的概率. 目录: 一.基于贝叶斯理论的分类方法 二.关于朴素贝叶斯的应用场景 三.基于Python和朴素贝叶斯的文本分类 1.准备数据 2.训练算法 3.测试算法 四.小结 以下进入正文: 一.基于贝叶斯理论的分类方法 假设有两类数据组成的数据集如下: 其中,假设两个概率分布的参数已知,并用p1(x,y)表示当前数据点(x,y)属于类

[机器学习&数据挖掘]朴素贝叶斯数学原理

1.准备: (1)先验概率:根据以往经验和分析得到的概率,也就是通常的概率,在全概率公式中表现是“由因求果”的果 (2)后验概率:指在得到“结果”的信息后重新修正的概率,通常为条件概率(但条件概率不全是后验概率),在贝叶斯公式中表现为“执果求因”的因 例如:加工一批零件,甲加工60%,乙加工40%,甲有0.1的概率加工出次品,乙有0.15的概率加工出次品,求一个零件是不是次品的概率即为先验概率,已经得知一个零件是次品,求此零件是甲或乙加工的概率是后验概率 (3)全概率公式:设E为随机试验,B1,

朴素贝叶斯算法资料整理和PHP 实现版本

朴素贝叶斯算法简洁 http://blog.csdn.net/xlinsist/article/details/51236454 引言 先前曾经看了一篇文章,一个老外程序员写了一些很牛的Shell脚本,包括晚下班自动给老婆发短信啊,自动冲Coffee啊,自动扫描一个DBA发来的邮件啊, 等等.于是我也想用自己所学来做一点有趣的事情.我的想法如下: 首先我写个scrapy脚本来抓取某个网站上的笑话 之后写个Shell脚本每天早上6点自动抓取最新的笑话 然后用朴素贝叶斯模型来判断当前的笑话是否属于成

PGM:贝叶斯网络与朴素贝叶斯网络

http://blog.csdn.net/pipisorry/article/details/51471222 贝叶斯与频率派思想 频率派思想 长久以来,人们对一件事情发生或不发生,只有固定的0和1,即要么发生,要么不发生,从来不会去考虑某件事情发生的概率有多大,不发生的概率又是多大.而且事情发生或不发生的概率虽然未知,但最起码是一个确定的值. 比如如果问那时的人们一个问题:"有一个袋子,里面装着若干个白球和黑球,请问从袋子中取得白球的概率是多少?"他们会立马告诉你,取出白球的概率就是

NLP系列(3)_用朴素贝叶斯进行文本分类(下)

作者: 龙心尘 && 寒小阳 时间:2016年2月. 出处: http://blog.csdn.net/longxinchen_ml/article/details/50629110 http://blog.csdn.net/han_xiaoyang/article/details/50629587 声明:版权所有,转载请联系作者并注明出处 1. 引言 上一篇文章我们主要从理论上梳理了朴素贝叶斯方法进行文本分类的基本思路.这篇文章我们主要从实践上探讨一些应用过程中的tricks,并进一步分