2016"百度之星" - 初赛(Astar Round2A)--HDU 5690 |数学转化+快速幂

Sample Input

3

1 3 5 2

1 3 5 1

3 5 99 69

Sample Output

Case #1:

No

Case #2:

Yes

Case #3:

Yes

Hint

对于第一组测试数据:111 mod 5 = 1,公式不成立,所以答案是”No”,而第二组测试数据中满足如上公式,所以答案是 “Yes”。

解:

m个x组成的数可以表示为x*(1+10+10^2+...+10^m-1)=x*(10^m-1)/9;

即x*(10^m-1)/9%k==c

x*(10^m-1)%(9*k)==9*c?

那么我们就是要求x*(10^m-1)/9 MOD k是不是==c那么,这里有一个分母我们怎么处理呢,肯定有人在想求逆元呀,但是 GCD(9,k)不一定等于1呀,所以求逆元的方法不能用了,那么怎么办呢,我们可以同时扩大9倍也就是求的 x * (10^m-1)MOD 9k 是不是等于 9 * c,剩下的就是 
快速幂了。

#include "cstdio"
#define LL long long
LL quick_mod(LL a,LL b,LL mod)
{
    LL ans=1;
    while(b>0)
    {
        if(b&1){
            ans=ans*a%mod;
        }
        a=a*a%mod;
        b>>=1;
    }
    return ans;
}
int main()
{
    LL T,x,m,k,c;
    scanf("%lld",&T);
    int con=1;
    while(T--)
    {
        scanf("%lld%lld%lld%lld",&x,&m,&k,&c);
        printf("Case #%d:\n",con++);
        LL mod=9*k;
        LL ans=quick_mod(10,m,mod)*x%mod-x;
        if(ans==9*c)
            printf("Yes\n");
        else
            printf("No\n");
    }
    return 0;
}
时间: 2024-12-24 14:55:48

2016"百度之星" - 初赛(Astar Round2A)--HDU 5690 |数学转化+快速幂的相关文章

2016百度之星-初赛(Astar Round2A)AII X

Problem Description F(x,m) 代表一个全是由数字x组成的m位数字.请计算,以下式子是否成立: F(x,m) mod k ≡ c Input 第一行一个整数T,表示T组数据. 每组测试数据占一行,包含四个数字x,m,k,c 1≤x≤9 1≤m≤10^10 0≤c<k≤10,000 Output 对于每组数据,输出两行: 第一行输出:"Case #i:".i代表第i组测试数据. 第二行输出“Yes” 或者 “No”,代表四个数字,是否能够满足题目中给的公式.

Hdu 5696 区间价值(2016百度之星初赛Astar Round2B )(线段树)

思路来源于:http://blog.csdn.net/kk303/article/details/51479423 注意数组用 long long 存,否则WA. /* Problem : Status : By wf, */ #include "algorithm" #include "iostream" #include "cstring" #include "cstdio" #include "string&q

2016&quot;百度之星&quot; - 初赛(Astar Round2A)解题报告

此文章可以使用目录功能哟↑(点击上方[+]) 有点智商捉急,第一题卡了好久,看来不服老,不服笨是不行的了...以下是本人目前的题解,有什么疑问欢迎提出 链接→2016"百度之星" - 初赛(Astar Round2A)  Problem 1001 All X Accept: 0    Submit: 0 Time Limit: 2000/1000 mSec(Java/Others)    Memory Limit : 65536 KB  Problem Description F(x,

HDU 5701 中位数计数( 2016&quot;百度之星&quot; - 初赛(Astar Round2B) 思维 + 暴力)

传送门 中位数计数 Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 852 Accepted Submission(s): 335 Problem Description 中位数定义为所有值从小到大排序后排在正中间的那个数,如果值有偶数个,通常取最中间的两个数值的平均数作为中位数. 现在有n个数,每个数都是独一无二的,求出每个数在多少个包含

HDU 5698 瞬间移动 (2016&quot;百度之星&quot; - 初赛(Astar Round2B) 1003)

传送门 瞬间移动 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 140 Accepted Submission(s): 66 Problem Description 有一个无限大的矩形,初始时你在左上角(即第一行第一列),每次你都可以选择一个右下方格子,并瞬移过去(如从下图中的红色格子能直接瞬移到蓝色格子),求到第n行第m列的格子有几种方案

hdu 5690 2016&quot;百度之星&quot; - 初赛(Astar Round2A) All X 快速二次幂 || 寻找周期

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5690 题意:m个数字全为x mod k ?= c;其中m <= 1010,0 < c,k <= 10,000; 法1:xxx = (10m-1)/9*x;但是n太大,需要同时mod.去除分母将式子变为:10m*x%(9k) - x%(9k) =? 9c ;其中 10m 快速二次幂即可: 时间复杂度为O(logn) 法2: 由于m个x数的产生对于mod具有可拆分性,所以直接求解周期即可: #i

2016&quot;百度之星&quot; - 初赛(Astar Round2A)1002 / HDU 5691 状态压缩DP

Sitting in Line Problem Description 度度熊是他同时代中最伟大的数学家,一切数字都要听命于他.现在,又到了度度熊和他的数字仆人们玩排排坐游戏的时候了.游戏的规则十分简单,参与游戏的N个整数将会做成一排,他们将通过不断交换自己的位置,最终达到所有相邻两数乘积的和最大的目的,参与游戏的数字有整数也有负数.度度熊为了在他的数字仆人面前展现他的权威,他规定某些数字只能在坐固定的位置上,没有被度度熊限制的数字则可以自由地交换位置. Input 第一行一个整数T,表示T组数

HDU 5690 All X的多种算法(2016&quot;百度之星&quot; - 初赛(Astar Round2A)1001)

传送门 All X Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 965 Accepted Submission(s): 462 Problem Description F(x,m) 代表一个全是由数字x组成的m位数字.请计算,以下式子是否成立: F(x,m) mod k ≡ c Input 第一行一个整数T,表示T组数据. 每组测试数据占

2016&quot;百度之星&quot; - 初赛(Astar Round2A)

http://acm.hdu.edu.cn/showproblem.php?pid=5692 题意:给一棵树,点有权值. 操作1:询问从0点出发,经过x点(输入)的路径中,点权和最大的路径的和是多少. 操作2:将x号点的值更新为y. 思路:已0为根形成一个有根树,经过x点的所有路径的终点都在已x为根的子树中,问题相当于求一颗子树中的所有节点到0点的距离最大值,将题目的点权理解成距离. 解法:用dfs顺序对0为根的树标号,按照标号作为线段树的序号,那么某一颗子树的点在线段树的区间也是连续的了,这是