在上一文中,我们介绍了该状态机模型的使用方法。通过例子,我们发现可以使用该模型快速构建满足基本业务需求的状态机。本文我们将解析该模型的基础代码,以便大家可以根据自己状态机特点进行修改。(转载请指明出于breaksoftware的csdn博客)
该模板库的基础方法实现在之后给出的工程的AutoStateChart.h中,该文件一共215行,其中有16行是辅助调试代码。以上一文中状态机类为例:
class CMachine_Download_Run_App : public AutoStateChart::CAutoStateChartMachine<CMachine_Download_Run_App, CStoreofMachine>
CMachine_Download_Run_App类继承于模板类CAutoStateChartMachine,该模板类有两个参数:继承类自身和CStoreofMachine。CStoreofMachine类顾名思义,其是状态机中用于存储数据的类。为什么要设计这样的类?因为在我们的状态机模型中,每个基础状态都是割裂的。这样设计的一个好处便是我们可以让每个基础状态的逻辑代码独立,和其他模块没有任何耦合。当我们要删除某个状态时,我们只要将它从状态机的跳转声明中摘除即可。当我们要新增某个状态时,我们也只要在状态机跳转中做相应声明即可。但是往往优点也伴随着缺点:它使得每个基础状态类的数据交互产生了障碍。特别是没有上下文关系的基础状态,跳跃性的传递信息将变得非常困难。于是我们就需要一个存活于整个状态机声明周期的“数据库”,它可以被每个基础状态类访问和修改。于是CStoreofMachine就应运而生。因为该类比较独立,所以我们先从该类开始解析。首先我们看下该类的声明:
#pragma once #include "AutoStateChart.h" #define PROPERTY(type,name) public: void Set##name(const type& n) { m_##name = n; } type Get##name() { return m_##name; } __declspec(property(get = Get##name, put = Set##name)) type Prop##name; private: type m_##name; class CStoreofMachine{ PROPERTY(std::string, ValueString); PROPERTY(std::wstring, ValueWString); PROPERTY(int, ValueInt); };
该类的写法可能只适合于windows的vs平台,其他平台没论证过。其实它的内容是非常简单的,就是暴露成员变量的set和get方法。只是我觉得这种写法比较有意思,才在这儿罗列下。
我们再看下该类在模板中的使用,我们先从最基础的类开始解析
class CEmpytLocalStore{}; template<class Store = CEmpytLocalStore> class CLocalStoreAccess{ public: typedef boost::function< Store& () > func; Store& GetStore(){return m_pFunc();}; void SetStore(func& pCallback){m_pFunc = pCallback;}; public: func m_pFunc; };
我们先定义了一个空类——CEmptyLocalStore,它相当于一个默认的“数据库”。当模板的使用者不需要“数据库”时,就可以在模板中不声明“数据库”类,此时我们的CEmptyLocalStore就生效了。比如我们上例的状态机可以改成:
class CMachine_Download_Run_App : public AutoStateChart::CAutoStateChartMachine<CMachine_Download_Run_App>
CLocalStoreAccess类主要提供如下作用:
- 设置访问“数据库”类对象的方法——SetStore
- 获取“数据库”类对象——GetStore
成员变量m_pFunc是一个函数指针,用于获取“数据库”类对象。该变量将由CLoaclStoreAccess继承类设置,相当于CLocalStoreAccess暴露了设置访问“数据库”类对象的能力。而它并不保存“数据库”类对象——它只提供“访问”能力,而不提供“存储”能力。
template<class Store = CEmpytLocalStore> class CLocalStoreBase: public boost::enable_shared_from_this<CLocalStoreBase<Store>>, public CLocalStoreAccess<Store> { public: void Init(){ func pfunc = boost::bind(&CLocalStoreBase<Store>::_GetStore, shared_from_this()); SetStore(pfunc);}; private: Store& _GetStore(){return m_Store;}; private: Store m_Store; };
CLoaclStoreBase类的私有成员变量m_Store就是“数据库”类对象,即该类提供了“存储”功能。它继承于CLoaclStoreAccess类,使得该类具备了访问数据库的能力——虽然它的私有方法可以访问“数据库”类对象,但是我还是希望将这些能力分开。因为之后介绍的基础状态类要有“访问”的能力,而不应该具备“存储”的能力。如果不将这些能力进行拆分,将会导致层次结构混乱。
CLoaclStoreBase类的init方法,打通了和ClocalStoreAccess的关系——设置函数指针。
介绍完用于存储上下文的模板类后,我们现在可以关注下状态机相关的类了。我们先看上一文中一个基础状态类的例子
class CSimpleState_Download_From_A : public AutoStateChart::CAutoStateChartBase<CSimpleState_Download_From_A, CMachine_Download_Run_App, CStoreofMachine>
CSimpleState_Download_From_A类继承于CAutoStateChartBase模板类。第一个模板参数是继承类自身,第二个是它所属的状态机,第三个是“数据库”类。我们在看下CAutoStateChartBase类的声明
template<class T, class MachineOrCompositeStates, class Store = CEmpytLocalStore> class CAutoStateChartBase: public boost::enable_shared_from_this<CAutoStateChartBase<T,MachineOrCompositeStates,Store>>, public CLocalStoreAccess<Store> { BOOST_TYPEOF_REGISTER_TYPE(T) public: std::string GetCurrentState(){ return typeid(T).name();}; bool IsCompositeStates(){return false;}; void SetInitState( const std::string& strState ){}; public: virtual void Entry(){}; virtual std::string Exit(){return "";}; };
该模板类使用第一个模板参数类的类名作为其继承类的状态,并使用GetCurrentState方法提供获取功能。比如上例中的状态名为class CSimpleState_Download_From_A。这个模板类继承于CLocalStoreAccess模板类,使得继承类具有可以“访问”第三个模板参数类——“数据库”类的能力——不具备“存储”能力。同时该类还暴露了两个方法——Entry和Exit,他们分别用于在进出该状态时,让状态机调用。
状态和存储类都介绍完了,我们就剩下调度状态变化的状态机类和复合状态类。其实从某种程度上说,复合状态是一种简单的状态机,它们在很多地方存在共性。我们从状态机类入口,进行讲解。首先看下上一文中的例子
class CMachine_Download_Run_App : public AutoStateChart::CAutoStateChartMachine<CMachine_Download_Run_App, CStoreofMachine>
状态机类需要继承于CAutoStateChartMachine模板类,该类声明如下:
template<class T, class LocalStore = CEmpytLocalStore> class CAutoStateChartMachine: public boost::enable_shared_from_this<CAutoStateChartMachine<T,LocalStore>>, public CLocalStoreAccess<LocalStore> { public: typedef LocalStore SelfStore; typedef T Self; public: CAutoStateChartMachine(){m_spStore.reset();}; virtual ~CAutoStateChartMachine(){}; private: virtual bool Transition(){return false;}; public: void StartMachine() { if ( !m_spStore ) { m_spStore = boost::make_shared<CLocalStoreBase<LocalStore>>(); m_spStore->Init(); SetStore( m_spStore->m_pFunc ); } while( Transition()){}; }; private: void Init(){}; public: bool IsCompositeStates(){return false;}; protected: std::string m_strCurrentState; std::string m_strCondition; MapString m_MapCompositeStatesSubState; boost::shared_ptr<CLocalStoreBase<LocalStore>> m_spStore; };
我们先看下这个类的成员变量。m_strCurrentState保存了状态机在跳转中的当前状态,m_strCondition保存了状态机中当前状态之前的状态的输出,它用于决定状态跳转方向。m_MapCompositeStatesSubState用于保存状态机中离开复合状态时的最后状态,即它记录复合状态机的浅历史。m_spStore指向“数据库”类对象。
该模板类最重要的函数就是StartMachine,它在第一次被调用时创建了“数据库”类对象。然后死循环调用Transition方法。Tansition方法是个虚方法,它是整个模型的核心。状态机类需要实现自己的Transition方法,以使得状态机可以运转起来。
我们再看下复合状态类的基础模板
template<class T, class MachineOrCompositeStates, class LocalStore = CEmpytLocalStore> class CCompositeStates: public CAutoStateChartBase<T,MachineOrCompositeStates,LocalStore>{ BOOST_TYPEOF_REGISTER_TYPE(T) public: CCompositeStates(){}; ~CCompositeStates(){}; private: virtual bool Transition(){return false;}; public: virtual void Entry(){while(Transition());}; virtual std::string Exit(){return m_strCondition;}; public: std::string GetCurrentState(){return m_strCurrentState;}; bool IsCompositeStates(){return true;}; void SetInitState( const std::string& strState ){ m_strCurrentState = strState; }; protected: std::string m_strCurrentState; std::string m_strCondition; MapString m_MapCompositeStatesSubState; };
因为复合状态也是一种状态,所以它也要有Entry和Exit两种方法。而其Entry方法就是调用Transition方法。该模板类的Transition方法也是虚方法,这意味着继承于该模板类的方法也要去实现Transition。
于是所有的重心都集中于Transition方法的实现。
为了让代码美观,我参考了MFC中使用宏简洁代码的思路,设计了如下的宏:
#define STARTSTATE(state) do { boost::shared_ptr<state> sp = boost::make_shared<state>(); sp->SetStore( m_pFunc ); if ( sp->IsCompositeStates() ) { std::string strState = typeid(state).name(); BOOST_AUTO(it, m_MapCompositeStatesSubState.find(strState)); if ( m_MapCompositeStatesSubState.end() != it ) { sp->SetInitState(it->second); if ( DEBUGFRAMEFLAG ) { std::string strInitState = it->second; std::cout<<"CompositeStates SetInitState:"<<strInitState<<std::endl; } } } sp->Entry(); m_strCondition = sp->Exit(); if ( sp->IsCompositeStates() ) { std::string strState = typeid(state).name(); std::string strInnerState = sp->GetCurrentState(); m_MapCompositeStatesSubState[strState] = strInnerState; if ( DEBUGFRAMEFLAG ) { std::cout<<"CompositeStates SaveState:"<<strState<< " " << strInnerState<< std::endl; } } } while (0); #define REGISTERSTATECONVERTBEGIN(startstate) bool Transition() { do { if ( m_strCurrentState.empty() ) { m_strCurrentState = typeid(startstate).name(); STARTSTATE(startstate); return true; } }while(0); #define REGISTERSTATECONVERT(fromstate,condition,tostate) do { std::string strFromState = typeid(fromstate).name(); std::string strToState = typeid(tostate).name(); if ( DEBUGFRAMEFLAG ) { std::cout<<"strFromState:"<<strFromState<<std::endl; std::cout<<"condition:"<<condition<<std::endl; std::cout<<"strToState:"<<strToState<<std::endl; std::cout<<"m_strCurrentState:"<<m_strCurrentState<<std::endl; std::cout<<"m_strCondition:"<<m_strCondition<<std::endl<<std::endl; } if ( IsCompositeStates() ) { if ( strFromState != m_strCurrentState || ( !m_strCondition.empty() && condition != m_strCondition ) ) { break; } } else { if ( strFromState != m_strCurrentState || condition != m_strCondition ) { break; } } m_strCurrentState = strToState; STARTSTATE(tostate); return true; }while(0); #define REGISTERSTATECONVERTEND() return false; };
然后复合状态类和状态机类只要使用这些宏去组织状态跳转,就可以清晰的描述过程了。