POJ 1236 Network of School(强联通缩点)

Description

A number of schools are connected to a computer network. Agreements have been developed among those schools: each school maintains a list of schools to which it distributes software (the “receiving schools”). Note that if B is in the distribution list of school
A, then A does not necessarily appear in the list of school B

You are to write a program that computes the minimal number of schools that must receive a copy of the new software in order for the software to reach all schools in the network according to the agreement (Subtask A). As a further task, we want to ensure that
by sending the copy of new software to an arbitrary school, this software will reach all schools in the network. To achieve this goal we may have to extend the lists of receivers by new members. Compute the minimal number of extensions that have to be made
so that whatever school we send the new software to, it will reach all other schools (Subtask B). One extension means introducing one new member into the list of receivers of one school.

Input

The first line contains an integer N: the number of schools in the network (2 <= N <= 100). The schools are identified by the first N positive integers. Each of the next N lines describes a list of receivers. The line i+1 contains the identifiers of the receivers
of school i. Each list ends with a 0. An empty list contains a 0 alone in the line.

Output

Your program should write two lines to the standard output. The first line should contain one positive integer: the solution of subtask A. The second line should contain the solution of subtask B.

Sample Input

5
2 4 3 0
4 5 0
0
0
1 0

Sample Output

1

2

题意:N(2<N<100)各学校之间有单向的网络,每个学校得到一套软件后,可以通过单向网络向周边
的学校传输,问题1:初始至少需要向多少个学校发放软件,使得网络内所有的学校最终都能得到软件。
2,至少需要添加几条传输线路(边),使任意向一个学校发放软件后,经过若干次传送,网络内所有的
学校最终都能得到软件。
解法:强联通缩点,建立DAG之后,找到入度为0的点的个数就是1的答案。
对于2,我们考虑每个点的入度和出度个数n和m,则需要添加max(n,m)条边(具体略)
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<string>
#include<iostream>
#include<queue>
#include<cmath>
#include<map>
#include<stack>
#include<bitset>
using namespace std;
#define REPF( i , a , b ) for ( int i = a ; i <= b ; ++ i )
#define REP( i , n ) for ( int i = 0 ; i < n ; ++ i )
#define CLEAR( a , x ) memset ( a , x , sizeof a )
typedef long long LL;
typedef pair<int,int>pil;
const int maxn=110;
const int maxm=10100;
struct node{
    int u,v;
    int next;
}e[maxm];
int head[maxn],cntE;
int DFN[maxn],low[maxn];
int s[maxm],top,index,cnt;
int belong[maxn],instack[maxn];
int in[maxn],out[maxn];
int n,m;
void init()
{
    top=cntE=0;
    index=cnt=0;
    CLEAR(DFN,0);
    CLEAR(head,-1);
    CLEAR(instack,0);
}
void addedge(int u,int v)
{
    e[cntE].u=u;e[cntE].v=v;
    e[cntE].next=head[u];
    head[u]=cntE++;
}
void Tarjan(int u)
{
    DFN[u]=low[u]=++index;
    instack[u]=1;
    s[top++]=u;
    for(int i=head[u];i!=-1;i=e[i].next)
    {
        int v=e[i].v;
        if(!DFN[v])
        {
            Tarjan(v);
            low[u]=min(low[u],low[v]);
        }
        else if(instack[v])
            low[u]=min(low[u],DFN[v]);
    }
    int v;
    if(DFN[u]==low[u])
    {
        cnt++;
        do{
            v=s[--top];
            belong[v]=cnt;
            instack[v]=0;
        }while(u!=v);
    }
}
void work()
{
    REPF(i,1,n)
      if(!DFN[i])  Tarjan(i);
    CLEAR(in,0);
    CLEAR(out,0);
    REP(i,cntE)
    {
        int u=e[i].u,v=e[i].v;
        if(belong[u]!=belong[v])
        {
            in[belong[v]]++;
            out[belong[u]]++;
        }
    }
    if(cnt==1)
    {
        printf("1\n0\n");
        return ;
    }
    int d_1=0,d_2=0;
    REPF(i,1,cnt)
    {
        if(!in[i])
            d_1++;
        if(!out[i])
            d_2++;
    }
    printf("%d\n",d_1);
    printf("%d\n",max(d_1,d_2));
}
int main()
{
    int x;
    while(~scanf("%d",&n))
    {
        init();
        REPF(i,1,n)
        {
            while(~scanf("%d",&x)&&x)
                addedge(i,x);
        }
        work();
    }
    return 0;
}

时间: 2024-12-16 22:06:26

POJ 1236 Network of School(强联通缩点)的相关文章

POJ 1236 Network of Schools(强联通缩点)

Network of Schools Description A number of schools are connected to a computer network. Agreements have been developed among those schools: each school maintains a list of schools to which it distributes software (the “receiving schools”). Note that

poj 1236 Network of Schools(tarjan缩点)

题目链接:http://poj.org/problem?id=1236 题意:给出n个学校和一些学校之间的网络链接关系,学校之间的网络是单向边,让你求出两个问题的答案,1.至少需要多少份软件,使得所有学校都可以收到.2.如果希望用一份软件就能够使所有学校收到需要添加几条边 题解:首先求强连通分量然后缩点,所谓缩点就是将一个连通图化为一个点.然后再以联通图构成一个图. 然后这题的问题1只要求联通分量入度为0的点的和就行了,问题2就是求连通分量入度和出度为0的和的最 大值.(为了构成全连通分量构成的

poj 1236 Network of Schools(tarjan+缩点)

Network of Schools Description A number of schools are connected to a computer network. Agreements have been developed among those schools: each school maintains a list of schools to which it distributes software (the “receiving schools”). Note that

POJ 1236 Network of Schools (强连通分量缩点求度数)

题意: 求一个有向图中: (1)要选几个点才能把的点走遍 (2)要添加多少条边使得整个图强联通 分析: 对于问题1, 我们只要求出缩点后的图有多少个入度为0的scc就好, 因为有入度的scc可以从其他地方到达. 对于问题2, 每个入度为0的scc, 都可以补一条边可以变成强连通图, 每个出度为0的scc, 也可以补一条边使其变成强连通图. 所以答案就是max(入度为0scc个数,出度为0scc个数). #include<cstdio> #include<iostream> #inc

POJ 1236 Network of Schools(强连通 Tarjan+缩点)

POJ 1236 Network of Schools(强连通 Tarjan+缩点) ACM 题目地址:POJ 1236 题意: 给定一张有向图,问最少选择几个点能遍历全图,以及最少加入?几条边使得有向图成为一个强连通图. 分析: 跟HDU 2767 Proving Equivalences(题解)一样的题目,只是多了个问题,事实上转化成DAG后就不难考虑了,事实上仅仅要选择入度为0的点即可了. 代码: /* * Author: illuz <iilluzen[at]gmail.com> *

poj 1236 Network of Schools 【强连通图】

题目:poj 1236 Network of Schools 类似题目hdoj 2767 3836 /*******以下kuang大神的解释,写的很好就不解释了*************************/ 强连通分量缩点求入度为0的个数和出度为0的分量个数 题目大意:N(2<N<100)各学校之间有单向的网络,每个学校得到一套软件后,可以通过单向网络向周边的学校传输,问题1:初始至少需要向多少个学校发放软件,使得网络内所有的学校最终都能得到软件.2,至少需要添加几条传输线路(边),使任

POJ 1236 Network of Schools(强连通分量)

POJ 1236 Network of Schools 链接:http://poj.org/problem?id=1236 题意:有一些学校连接到一个计算机网络.这些学校之间达成了一个协议:每个学校维护着一个学校列表,它向学校列表中的学校发布软件.注意,如果学校B 在学校A 的列表中,则A 不一定在B 的列表中. 任务A:计算为使得每个学校都能通过网络收到软件,你至少需要准备多少份软件拷贝. 任务B:考虑一个更长远的任务,想确保给任意一个学校发放一个新的软件拷贝,该软件拷贝能发布到网络中的每个学

Poj 1236 Network of Schools (Tarjan)

题目链接: Poj 1236 Network of Schools 题目描述: 有n个学校,学校之间有一些单向的用来发射无线电的线路,当一个学校得到网络可以通过线路向其他学校传输网络,1:至少分配几个网络才能够让所有学校被网络覆盖?2:至少要加几条线路就能做到在任意一个学校安装网络都可以覆盖全部学校? 解题思路: 先用Tarjan对强连通分量进行缩点,然后对缩点以后的图进行处理,统计图中节点出度为零的有多少,入度为零的有多少个? 因为入度为零的点不能由其他的点到达,在每个入度为零的节点安装网络可

ZOJ 3795 Grouping 强联通缩点+拓扑序+偏序集的最大链的大小

题意:有n个人,m个关系,关系是这两个人前一个人可以跟后一个比较. 那么问你我最少分多少组可以使这个组里的人都不可以比较. 只会强联通缩点,真特么不知道怎么做,想了一个小时,网上一看,还要会偏序集的东西,有一个叫Dilworth定理的东西. 定理1 令(X,≤)是一个有限偏序集,并令r是其最大链的大小.则X可以被划分成r个但不能再少的反链. 其对偶定理称为Dilworth定理: 定理2 令(X,≤)是一个有限偏序集,并令m是反链的最大的大小.则X可以被划分成m个但不能再少的链. 然后我们用到的是