就拿杭电OJ上的第1003题开始吧,这题比原书要复杂一些。
Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are
between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the
sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5
Sample Output
Case 1:
14 1 4
Case 2:
7 1 6
题意很简单,那么就开始分析了,最容易想到的方法自然是枚举,只需要枚举出所有的可能情况。
具体实现如下:
#include <stdio.h> #define maxn 100000 + 2 int arr[maxn]; int main(){ int t, n, maxLeft, maxRight, maxSum, id = 1; int thisSum; scanf("%d", &t); while(t--){ scanf("%d", &n); for(int i = 0; i < n; ++i) scanf("%d", &arr[i]); maxSum = arr[0]; maxLeft = maxRight = 0; /*maxSubsequenceSum------O(N^3)*/ for(int i = 0; i < n; ++i){ for(int j = i; j < n; ++j){ thisSum = 0; for(int k = i; k <= j; ++k){ thisSum += arr[k]; } if(thisSum > maxSum){ maxSum = thisSum; maxLeft = i; maxRight = j; } } } printf("Case %d:\n%d %d %d\n", id++, maxSum, maxLeft + 1, maxRight + 1); if(t) printf("\n"); } return 0; }
结果是意料之中的超时
接下来我们再换一个效率高点的算法。其实上一个算法中第三层for循环可以去掉,让第二层表示以arr[i]为起点的子序列,就这样一直向右加下去,如果和大于maxSum,那么就更新值。实现如下:
#include <stdio.h> #define maxn 100000 + 2 int arr[maxn]; int main(){ int t, n, maxLeft, maxRight, maxSum, id = 1; int thisSum; scanf("%d", &t); while(t--){ scanf("%d", &n); for(int i = 0; i < n; ++i) scanf("%d", &arr[i]); maxSum = arr[0]; maxLeft = maxRight = 0; /*maxSubsequenceSum------O(N^2)*/ for(int i = 0; i < n; ++i){ thisSum = 0; for(int j = i; j < n; ++j){ thisSum += arr[j]; if(thisSum > maxSum){ maxSum = thisSum; maxLeft = i; maxRight = j; } } } printf("Case %d:\n%d %d %d\n", id++, maxSum, maxLeft + 1, maxRight + 1); if(t) printf("\n"); } return 0; }
依旧超时
只能再换效率更高算法,对于最大子序列和这个问题其实可以细分成多个子问题来求解,再将子问题的解合并,于是可以考虑下分治法,具体实现如下:
#include <stdio.h> #define maxn 100000 + 2 int arr[maxn]; int t, n, maxLeft, maxRight, maxSum, id = 1; int max3(int a, int b, int c){ if(a >= b && a >= c) return 1; if(b >= a && b >= c) return 2; if(c >= a && c >= b) return 3; } int maxSubsequenceSum(int left, int right, int *l, int *r){ int thisLeft, thisRight; int leftSum, rightSum, midSum, mid; int leftBorderSum, maxLeftBorderSum; int rightBorderSum, maxRightBorderSum; int ll, lr, rl, rr, ml, mr; if(left == right){ *l = *r = left; return arr[left]; } mid = (left + right) / 2; leftSum = maxSubsequenceSum(left, mid, &ll, &lr); rightSum = maxSubsequenceSum(mid + 1, right, &rl, &rr); leftBorderSum = 0; thisLeft = mid; maxLeftBorderSum = arr[mid]; for(int i = mid; i >= left; --i){ leftBorderSum += arr[i]; if(leftBorderSum >= maxLeftBorderSum){ maxLeftBorderSum = leftBorderSum; thisLeft = i; } } rightBorderSum = 0; thisRight = mid + 1; maxRightBorderSum = arr[mid + 1]; for(int i = mid + 1; i <= right; ++i){ rightBorderSum += arr[i]; if(rightBorderSum > maxRightBorderSum){ maxRightBorderSum = rightBorderSum; thisRight = i; } } midSum = maxLeftBorderSum + maxRightBorderSum; int sign = max3(leftSum, midSum, rightSum); if(sign == 1){ maxSum = leftSum; *l = ll; *r = lr; }else if(sign == 2){ maxSum = midSum; *l = thisLeft; *r = thisRight; }else{ maxSum = rightSum; *l = rl; *r = rr; } return maxSum; } int main(){ scanf("%d", &t); while(t--){ scanf("%d", &n); for(int i = 0; i < n; ++i) scanf("%d", &arr[i]); maxSum = arr[0]; maxLeft = maxRight = 0; maxSubsequenceSum(0, n - 1, &maxLeft, &maxRight); printf("Case %d:\n%d %d %d\n", id++, maxSum, maxLeft + 1, maxRight + 1); if(t) printf("\n"); } return 0; }
终于AC了!
书上还介绍了一个狂拽酷炫叼炸天的O(n)算法,这里也尝试一下,再对比一下与分治法的时间消耗。改的过程真是相当得不顺利,WA了5次左右才改对,不过把数组开销都省了,真心够精简的。
#include <stdio.h> int main(){ int t, n, maxLeft, maxRight, maxSum, temp; int thisLeft, thisSum; scanf("%d", &t); for(int id = 1; id <= t; ++id){ scanf("%d", &n); scanf("%d", &maxSum); thisLeft = maxLeft = maxRight = 0; thisSum = maxSum; if(thisSum < 0){ thisSum = 0; thisLeft = 1; } for(int i = 1; i < n; ++i){ scanf("%d", &temp); thisSum += temp; if(thisSum > maxSum){ maxSum = thisSum; maxLeft = thisLeft; maxRight = i; } if(thisSum < 0){ thisLeft = i + 1; thisSum = 0; } } printf("Case %d:\n%d %d %d\n", id, maxSum, maxLeft + 1, maxRight + 1); if(id != t) printf("\n"); } return 0; }
时间开销如下
呼呼,四种算法总算都实现了。实现过程虽然很受挫,但是很充实的说,结果也很让人愉快,A wonderful day~
HDU1003 Max Sum 最大子序列和的问题【四种算法分析+实现】