洛谷 P3366 【模板】最小生成树 如题

P3366 【模板】最小生成树

  • 时空限制1s / 128MB

题目描述

如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出orz

输入输出格式

输入格式:

第一行包含两个整数N、M,表示该图共有N个结点和M条无向边。(N<=5000,M<=200000)

接下来M行每行包含三个整数Xi、Yi、Zi,表示有一条长度为Zi的无向边连接结点Xi、Yi

输出格式:

输出包含一个数,即最小生成树的各边的长度之和;如果该图不连通则输出orz

输入输出样例

输入样例#1:

4 5
1 2 2
1 3 2
1 4 3
2 3 4
3 4 3

输出样例#1:

7

说明

时空限制:1000ms,128M

数据规模:

对于20%的数据:N<=5,M<=20

对于40%的数据:N<=50,M<=2500

对于70%的数据:N<=500,M<=10000

对于100%的数据:N<=5000,M<=200000

样例解释:

所以最小生成树的总边权为2+2+3=7

------------------------------------------------------------------------------------------------------------

Kruskal(并查集+贪心实现):

 1 #include<stdio.h>
 2 #include<string.h>
 3 #include<iostream>
 4 #include<algorithm>
 5 #define maxn 233333
 6 using namespace std;
 7 struct node{
 8     int fr,to,w;
 9 };
10 node e[maxn];
11 int n,m,cnt,num,fa[maxn],ans;
12 bool cmp(node,node);
13 int getf(int);
14 int main(){
15     scanf("%d %d",&n,&m);
16     for(int i=1;i<=n;i++) fa[i]=i;
17     cnt=0;num=0;ans=0;
18     for(int i=1;i<=m;i++){
19         int x,y,z;
20         scanf("%d %d %d",&x,&y,&z);
21         e[++cnt].fr=x;e[cnt].to=y;e[cnt].w=z;
22     }
23     sort(e+1,e+1+m,cmp);
24     for(int i=1;i<=m;i++){
25         if(num==n-1) break;
26         int af,bf;
27         af=getf(e[i].fr);
28         bf=getf(e[i].to);
29         if(af!=bf){
30             fa[af]=bf;
31             num++;
32             ans+=e[i].w;
33         }
34     }
35     if(num<n-1) printf("orz");
36     else printf("%d",ans);
37     return 0;
38 }
39 int getf(int x){
40     if(fa[x]==x) return x;
41     return fa[x]=getf(fa[x]);
42 }
43 bool cmp(node x,node y){
44     return x.w<y.w;
45 }

Kruskal

时间: 2024-10-15 02:23:27

洛谷 P3366 【模板】最小生成树 如题的相关文章

AC自动机(附洛谷P3769模板题)

首先,介绍一下AC自动机(Aho-Corasick automaton),是一种在一个文本串中寻找每一个已给出的模式串的高效算法. 在学习AC自动机之前,你需要先学习Trie树和KMP算法,因为AC自动机正式利用并结合了两者的思想. 说到实际的不同,其实AC自动机只是在Trie树上引入了一个类似KMP中next数组的东西叫做Fail指针. 对于每一个节点,Fail指针指向该节点所代表的字符串中,次长的.在Trie树中存在的后缀(因为最长的在Trie树种存在的后缀就是其本身)所代表的节点. 举例:

【C++】最近公共祖先LCA(Tarjan离线算法)&amp;&amp; 洛谷P3379LCA模板

1.前言 首先我们介绍的算法是LCA问题中的离线算法-Tarjan算法,该算法采用DFS+并查集,再看此算法之前首先你得知道并查集(尽管我相信你如果知道这个的话肯定是知道并查集的),Tarjan算法的优点在于相对稳定,时间复杂度也比较居中,也很容易理解(个人认为). 2.思想 下面详细介绍一下Tarjan算法的思想: 1.任选一个点为根节点,从根节点开始. 2.遍历该点u所有子节点v,并标记这些子节点v已被访问过. 3.若是v还有子节点,返回2,否则下一步. 4.合并v到u上. 5.寻找与当前点

洛谷P3375 [模板]KMP字符串匹配

To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果你不知道这是什么意思也不要问,去百度搜[kmp算法]学习一下就知道了. 输入输出格式 输入格式: 第一行为一个字符串,即为s1(仅包含大写字母) 第二行为一个字符串,即为s2(仅包含大写字母) 输出格式: 若干行,每行包含一个整数,表示s2在s1中出现的位置 接下来1行,包括length(s2)个整

洛谷.3803.[模板]多项式乘法(FFT)

题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. #include <cmath> #include <cctype> #include <cstdio> #include <algorithm> #define gc() getchar() const int N=1e6+5; const double PI=acos(-1); int n,m; struct Complex { double

洛谷.1919.[模板]A乘B Problem升级版(FFT)

题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 //n位*n位最多就只有2n位了 //论putchar的速度..还是快的 #include <cmath> #include <cstdio> #include <cctype> #include <algorithm> #define gc() getchar

洛谷P3366 【模板】最小生成树

P3366 [模板]最小生成树 319通过 791提交 题目提供者HansBug 标签 难度普及- 提交  讨论  题解 最新讨论 里面没有要输出orz的测试点 如果你用Prim写了半天都是W- 题目描述有错 题目描述 如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出orz 输入输出格式 输入格式: 第一行包含两个整数N.M,表示该图共有N个结点和M条无向边.(N<=5000,M<=200000) 接下来M行每行包含三个整数Xi.Yi.Zi,表示有一条长度为Zi的无向边连接结点Xi

洛谷 P3366 【模板】最小生成树

题目描述 如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出orz 输入输出格式 输入格式: 第一行包含两个整数N.M,表示该图共有N个结点和M条无向边.(N<=5000,M<=200000) 接下来M行每行包含三个整数Xi.Yi.Zi,表示有一条长度为Zi的无向边连接结点Xi.Yi 输出格式: 输出包含一个数,即最小生成树的各边的长度之和:如果该图不连通则输出orz 输入输出样例 输入样例#1: 4 5 1 2 2 1 3 2 1 4 3 2 3 4 3 4 3 输出样例#1: 7

洛谷 [P2483] [模板] k短路

人生中的第一道黑题... 其实就是k短路模板 #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <cstdlib> #include <queue> using namespace std; const int MAXN=400005; int init(){ int

洛谷 P3709 大爷的字符串题

https://www.luogu.org/problem/show?pid=3709 题目背景 在那遥远的西南有一所学校 /*被和谐部分*/ 然后去参加该省省选虐场 然后某蒟蒻不会做,所以也出了一个字符串题: 题目描述 给你一个字符串a,每次询问一段区间的贡献 贡献定义: 每次从这个区间中随机拿出一个字符x,然后把x从这个区间中删除,你要维护一个集合S 如果S为空,你rp减1 如果S中有一个元素不小于x,则你rp减1,清空S 之后将x插入S 由于你是大爷,平时做过的题考试都会考到,所以每次询问