2669[cqoi2012]局部极小值 容斥+状压dp

2669: [cqoi2012]局部极小值

Time Limit: 3 Sec  Memory Limit: 128 MB
Submit: 774  Solved: 411
[Submit][Status][Discuss]

Description

有一个nm列的整数矩阵,其中1到nm之间的每个整数恰好出现一次。如果一个格子比所有相邻格子(相邻是指有公共边或公共顶点)都小,我们说这个格子是局部极小值。

给出所有局部极小值的位置,你的任务是判断有多少个可能的矩阵。

Input

输入第一行包含两个整数nm(1<=n<=4, 1<=m<=7),即行数和列数。以下n行每行m个字符,其中“X”表示局部极小值,“.”表示非局部极小值。

Output

输出仅一行,为可能的矩阵总数除以12345678的余数。

Sample Input

3 2
X.
..
.X

Sample Output

60

容斥,推一推可以得到X的个数不超过8个(虽然我不知道是怎么推的)
枚举,从小到大填数,状压dp可以计算出对于此种图的填数方案
用cnt[s]表示状态s下可以填数的方案(包括之前已经填过的X但不包括没填的X)
f[i][s]转移就得到啦(水一波)

这样我们可以保证X的位置一定是周围最小的,但却不能保证其他位置不会出现多余的‘X‘
于是我们dfs出每一个可以为X的地方,容斥一下就好啦
 
推荐blog
http://blog.csdn.net/popoqqq/article/details/48028773
 
取模有毒
a+=b;if(a>=mod)a-=mod;
如果b是负数的话..就炸了!!
调了1h..

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#define mod 12345678
#define ll long long
using namespace std;
int n,m,tp,cnt[1<<9],ok[10][10];
int dx[]={0,0,1,-1,1,-1,1,-1,0};
int dy[]={1,-1,0,0,1,-1,-1,1,0};
char mp[10][10];ll ans,f[30][1<<9];
struct node{int x,y;}p[10];
int dp(){
    memset(cnt,0,sizeof(cnt));
    memset(f,0,sizeof(f));tp=0;
    for(int i=1;i<=n;i++)
    for(int j=1;j<=m;j++)
    if(mp[i][j]==‘X‘)
    p[++tp]=(node){i,j};
    for(int st=0;st<(1<<tp);st++){
        memset(ok,0,sizeof(ok));
        for(int j=1;j<=tp;j++)
        if(!(st&(1<<(j-1))))ok[p[j].x][p[j].y]=1;
        for(int i=1;i<=n;i++)
        for(int k,j=1;j<=m;j++){
            for(k=0;k<9;k++)
            if(ok[i+dx[k]][j+dy[k]])break;
            if(k==9)cnt[st]++;
        }
    }
    f[0][0]=1;
    for(int i=1;i<=n*m;i++)
    for(int st=0;st<(1<<tp);st++){
        (f[i][st]+=f[i-1][st]*max(0,cnt[st]-i+1))%=mod;
        for(int k=1;k<=tp;k++)
        if((1<<(k-1))&st)(f[i][st]+=f[i-1][st^(1<<(k-1))])%=mod;
    }
    return f[n*m][(1<<tp)-1];
}
void dfs(int x,int y,int c){
    int t;
    if(x==n+1){
        (ans+=dp()*(c&1?-1:1))%=mod;
        return;
    }
    if(y==m)dfs(x+1,1,c);
    else dfs(x,y+1,c);
    for(t=0;t<9;t++)if(mp[dx[t]+x][dy[t]+y]==‘X‘)break;
    if(t<9)return;
    mp[x][y]=‘X‘;
    if(y==m)dfs(x+1,1,c+1);
    else dfs(x,y+1,c+1);
    mp[x][y]=‘.‘;
}
int main(){
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++)scanf("%s",mp[i]+1);
    for(int i=1;i<=n;i++)
    for(int j=1;j<=m;j++)
    if(mp[i][j]==‘X‘)
    for(int k=0;k<8;k++){
        int nx=i+dx[k],ny=j+dy[k];
        if(mp[nx][ny]==‘X‘){puts("0");return 0;}
    }
    dfs(1,1,0);
    ans<0?ans+=mod:1;
    cout<<ans;
    return 0;
}
时间: 2024-10-29 12:26:50

2669[cqoi2012]局部极小值 容斥+状压dp的相关文章

BZOJ 2669 cqoi2012 局部极小值 状压DP+容斥原理

题目大意:给定一个n?m的矩阵,标记出其中的局部极小值,要求填入1...n?m,求方案数 <多年的心头大恨终于切掉了系列> 考虑将数字从小到大一个一个填进去 由于局部极小值最多8个,我们可以状压DP 令fi,j表示已经填完了前i个数,局部极小值的填充状态为j的方案数 预处理出cntj表示填充状态为j时共有多少位置是可以填充的(包括已填充的局部极小值位置) 那么有DP方程fi,j=fi?1,j?C1cntj?i+1+∑k∈jfi?1,j?{k} 但是问题是这样虽然保证了标记的位置都是局部最小值,

2016 CCPC 网络赛 B 高斯消元 C 树形dp(待补) G 状压dp+容斥(待补) H 计算几何

2016 CCPC 网络赛 A - A water problem 水题,但读题有个坑,输入数字长度很大.. B - Zhu and 772002 题意:给出n个数(给出的每个数的质因子最大不超过2000),选出多个数相乘得b.问有多少种选法让b 为完全平方数. tags:高斯消元,求异或方程组解的个数.   好题 每个数先素数分解开.  对于2000以内的每个素数p[i],这n个数有奇数个p[i]则系数为1,偶数个则系数为0,最后n个数的p[i]系数异或和都要为0才会使得最后的积为完全平方数.

●BZOJ 2669 [cqoi2012]局部极小值

题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2669 题解: 容斥,DP,DFS 先看看 dp 部分:首先呢,X的个数不会超过 8个.个数很少,所以考虑状压,把需要填 X的那几个位置状压为二进制10表示对应的那个X位置是否已经填数.同时填的数互不重复,考虑从小填到大. 令 cnt[S] 表示除了不在集合 S 里的 X 位置及其周围的位置,剩下的位置个数. 定义 dp[i][S]表示从小到大填数填完了i这个数,且已经填了的 S 这个集合里

4455: [Zjoi2016]小星星|状压DP|容斥原理

OrzSDOIR1ak的晨神 能够考虑状压DP枚举子集,求出仅仅保证连通性不保证一一相应的状态下的方案数,然后容斥一下就是终于的答案 #include<algorithm> #include<iostream> #include<cstdlib> #include<cstring> #include<cstdio> #include<vector> #include<cmath> #include<queue>

【uoj#37/bzoj3812】[清华集训2014]主旋律 状压dp+容斥原理

题目描述 求一张有向图的强连通生成子图的数目对 $10^9+7$ 取模的结果. 题解 状压dp+容斥原理 设 $f[i]$ 表示点集 $i$ 强连通生成子图的数目,容易想到使用总方案数 $2^{sum[i]}$ 减去不为强连通图的方案数得到强连通图的方案数,其中 $sum[i]$ 表示点集 $i$ 中边的数目. 考虑什么样的图不是强连通图:缩点后入度为0的强连通分量对应的点集不是全集. 枚举这些入度为0的强连通分量对应的点集,由于无法保证只有这些点构成的入度为0的强连通分量,因此需要进一步容斥.

bzoj 1879: [Sdoi2009]Bill的挑战【状压dp】

石乐志写容斥--其实状压dp就行 设f[i][s]表示前i个字母,匹配状态为s,预处理g[i][j]为第i个字母是j的1~n的集合,转移的时候枚举26个字母转移,最后答案加上正好有k个的方案即可 #include<iostream> #include<cstdio> #include<cstring> using namespace std; const int mod=1000003; int T,n,m,len,t,f[55][50005],g[55][27],an

nyoj1273 河南省第九届省赛_&quot;宣传墙&quot;、状压DP+矩阵幂加速

宣传墙 时间限制:1000 ms  |  内存限制:65535 KB 难度:4 描述 ALPHA 小镇风景美丽,道路整齐,干净,到此旅游的游客特别多.CBA 镇长准备在一条道路南 面 4*N 的墙上做一系列的宣传.为了统一规划,CBA 镇长要求每个宣传栏只能占相邻的两个方格 位置.但这条道路被另一条道路分割成左右两段.CBA 镇长想知道,若每个位置都贴上宣传栏, 左右两段各有有多少种不同的张贴方案. 例如: N=6,M=3, K=2, 左,右边各有 5 种不同的张贴方案 输入 第一行: T 表示

ZOJ3305Get Sauce 状压DP,

状压DP的题目留个纪念,首先题意一开始读错了,搞了好久,然后弄好了,觉得DFS可以,最后超时,修改了很久还是超时,没办法看了一下n的范围,然后觉得状压可以,但是没有直接推出来,就记忆化搜索了一下,可是一直错,莫名奇妙,然后没办法看了一下题解,发现了下面这个比较好的方法,然后按照这个方程去推,然后敲,也是WA了好多把,写的太搓了,没人家的清楚明了,唉~也算是给自己留个纪念,状压一直做的都不太好~唉~还好理解了, 参考了  http://blog.csdn.net/nash142857/articl

poj 2411 Mondriaan&#39;s Dream(状压DP)

Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 12232   Accepted: 7142 Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, after producing the drawings in his 'toilet series