C#多线程学习 之 线程池[ThreadPool]

在多线程的程序中,经常会出现两种情况:

一种情况:   应用程序中,线程把大部分的时间花费在等待状态,等待某个事件发生,然后才能给予响应 
                  这一般使用ThreadPool(线程池)来解决;

另一种情况:线程平时都处于休眠状态,只是周期性地被唤醒 
                  这一般使用Timer(定时器)来解决;

本篇文章单单讲线程池[ThreadPool]

ThreadPool类 MSDN帮助信息: http://msdn.microsoft.com/zh-cn/library/system.threading.threadpool.aspx#Y0

将任务添加进线程池:

ThreadPool.QueueUserWorkItem(new WaitCallback(方法名));

重载

ThreadPool.QueueUserWorkItem(new WaitCallback(方法名), 参数);

因为ThreadPool是静态类 所以不需要实例化.

对于线程池主要的控制有控制线程数大小:

ThreadPool.SetMaxThreads 方法

public static bool SetMaxThreads(
	int workerThreads,
	int completionPortThreads
)

参数:

workerThreads
类型:System.Int32 
线程池中辅助线程的最大数目。
completionPortThreads
类型:System.Int32 
线程池中异步 I/O 线程的最大数目。

例子:


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading;

namespace 多线程池试验

{

    class Program

    {

        public static void Main()

        {

            ThreadPool.SetMaxThreads(3, 3);

            for (int i = 0; i < 50; i++)

            {

                thr t = new thr();

                ThreadPool.QueueUserWorkItem(new WaitCallback(t.ThreadProc), i);

            }

            Console.WriteLine("断点测试");

            Thread.Sleep(100000);

            Console.WriteLine("运行结束");

        }

        public class thr

        {

            public void ThreadProc(object i)

            {

                Console.WriteLine("Thread[" + i.ToString() + "]");

                Thread.Sleep(1000);

            }

        }

    }

}

输出结果:

您会发现 断点测试 在上面了, 这是什么原因呢?

原因:

1. 线程池的启动和终止不是我们程序所能控制的, 我反正是不知道的, 你如果知道的话 可以发邮件给我 [email protected]

2. 线程池中的线程执行完之后是没有返回值的.

总之一句话, 我们不知道线程池他干了什么, 那么我们该怎么解决 任务完成问题呢?

操作系统提供了一种”信号灯”(ManualResetEvent)

ManualResetEvent 允许线程通过发信号互相通信。通常,此通信涉及一个线程在其他线程进行之前必须完成的任务。当一个线程开始一个活动(此活动必须完成后,其他线程才能开始)时,它调用 Reset 以将 ManualResetEvent 置于非终止状态,此线程可被视为控制 ManualResetEvent。调用 ManualResetEvent 上的 WaitOne 的线程将阻止,并等待信号。当控制线程完成活动时,它调用 Set 以发出等待线程可以继续进行的信号。并释放所有等待线程。一旦它被终止,ManualResetEvent 将保持终止状态(即对 WaitOne 的调用的线程将立即返回,并不阻塞),直到它被手动重置。可以通过将布尔值传递给构造函数来控制 ManualResetEvent 的初始状态,如果初始状态处于终止状态,为 true;否则为 false。

详细见MSDN: http://msdn.microsoft.com/zh-cn/library/system.threading.manualresetevent.aspx

主要使用了

eventX.WaitOne(Timeout.Infinite, true);  阻止当前线程,直到当前 WaitHandle 收到信号为止。

eventX.Set(); 将事件状态设置为终止状态,允许一个或多个等待线程继续。

修改后的程序:


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading;

namespace 多线程池试验

{

    class Program

    {

        public static void Main()

        {

            //新建ManualResetEvent对象并且初始化为无信号状态

            ManualResetEvent eventX = new ManualResetEvent(false);

            ThreadPool.SetMaxThreads(3, 3);

            thr t = new thr(15, eventX);

            for (int i = 0; i < 15; i++)

            {

                ThreadPool.QueueUserWorkItem(new WaitCallback(t.ThreadProc), i);

            }

            //等待事件的完成,即线程调用ManualResetEvent.Set()方法

            //eventX.WaitOne  阻止当前线程,直到当前 WaitHandle 收到信号为止。

            eventX.WaitOne(Timeout.Infinite, true);

            Console.WriteLine("断点测试");

            Thread.Sleep(10000);

            Console.WriteLine("运行结束");

        }

        public class thr

        {

            public thr(int count,ManualResetEvent mre)

            {

                iMaxCount = count;

                eventX = mre;

            }

            public static int iCount = 0;

            public static int iMaxCount = 0;

            public ManualResetEvent eventX;

            public void ThreadProc(object i)

            {

                Console.WriteLine("Thread[" + i.ToString() + "]");

                Thread.Sleep(2000);

                //Interlocked.Increment()操作是一个原子操作,作用是:iCount++ 具体请看下面说明

                //原子操作,就是不能被更高等级中断抢夺优先的操作。你既然提这个问题,我就说深一点。

                //由于操作系统大部分时间处于开中断状态,

                //所以,一个程序在执行的时候可能被优先级更高的线程中断。

                //而有些操作是不能被中断的,不然会出现无法还原的后果,这时候,这些操作就需要原子操作。

                //就是不能被中断的操作。

                Interlocked.Increment(ref iCount);

                if (iCount == iMaxCount)

                {

                    Console.WriteLine("发出结束信号!");

                    //将事件状态设置为终止状态,允许一个或多个等待线程继续。

                    eventX.Set();

                }

            }

        }

    }

}

输出结果:

顺序正常了.

程序源码: 多线程池试验.zip

时间: 2024-11-08 22:39:24

C#多线程学习 之 线程池[ThreadPool]的相关文章

C#多线程学习 之 线程池[ThreadPool](转)

在多线程的程序中,经常会出现两种情况: 一种情况:   应用程序中,线程把大部分的时间花费在等待状态,等待某个事件发生,然后才能给予响应                   这一般使用ThreadPool(线程池)来解决: 另一种情况:线程平时都处于休眠状态,只是周期性地被唤醒                   这一般使用Timer(定时器)来解决: 本篇文章单单讲线程池[ThreadPool] ThreadPool类 MSDN帮助信息: http://msdn.microsoft.com/z

多线程系列(2)线程池ThreadPool

上一篇文章我们总结了多线程最基础的知识点Thread,我们知道了如何开启一个新的异步线程去做一些事情.可是当我们要开启很多线程的时候,如果仍然使用Thread我们需要去管理每一个线程的启动,挂起和终止,显然是很麻烦的一件事情.还好.net framework为我们提供了线程池ThreadPool来帮助我们来管理这些线程,这样我们就不再需要手动地去终止这些线程.这一篇文章就让我们来学习一下线程池ThreadPool吧.关于它我想从以下几个方面进行总结. 认识线程池ThreadPool Thread

多线程二:线程池(ThreadPool)

在上一篇中我们讲解了多线程的一些基本概念,并举了一些例子,在本章中我们将会讲解线程池:ThreadPool. 在开始讲解ThreadPool之前,我们先用下面的例子来回顾一下以前讲过的Thread. 1 private void Threads_Click(object sender, EventArgs e) 2 { 3 Console.WriteLine($"****************btnThreads_Click Start {Thread.CurrentThread.Manage

多线程Thread,线程池ThreadPool

首先我们先增加一个公用方法DoSomethingLong(string name),这个方法下面的举例中都有可能用到 1 #region Private Method 2 /// <summary> 3 /// 一个比较耗时耗资源的私有方法 4 /// </summary> 5 /// <param name="name"></param> 6 private void DoSomethingLong(string name) 7 { 8

Android多线程编程之线程池学习篇(一)

Android多线程编程之线程池学习篇(一) 一.前言 Android应用开发中多线程编程应用比较广泛,而应用比较多的是ThreadPoolExecutor,AsyncTask,IntentService,HandlerThread,AsyncTaskLoader等,为了更详细的分析每一种实现方式,将单独成篇分析.后续篇章中可能涉及到线程池的知识,特此本篇分析为何使用线程池,如何使用线程池以及线程池的使用原理. 二.Thread Pool基础 进程代表一个运行中的程序,一个运行中的Android

高效线程池(threadpool)的实现

高效线程池(threadpool)的实现 Nodejs编程是全异步的,这就意味着我们不必每次都阻塞等待该次操作的结果,而事件完成(就绪)时会主动回调通知我们.在网络编程中,一般都是基于Reactor线程模型的变种,无论其怎么演化,其核心组件都包含了Reactor实例(提供事件注册.注销.通知功能).多路复用器(由操作系统提供,比如kqueue.select.epoll等).事件处理器(负责事件的处理)以及事件源(linux中这就是描述符)这四个组件.一般,会单独启动一个线程运行Reactor实例

43_2013年11月22日 线程池 Socket(Thread Lock Process 摇奖 线程池ThreadPool)

1>模拟线程池,生产者消费者问题 using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading; using System.Threading.Tasks; namespace Product { class Program { static void Main(string[] args) { //创建一个池子 MyConncetion[]

多线程编程学习笔记——线程池(一)

接上文 多线程编程学习笔记——线程同步(一) 接上文 多线程编程学习笔记——线程同步(二) 接上文 多线程编程学习笔记——线程同步(三) 创建多线程操作是非常昂贵的,所以每个运行时间非常短的操作,创建多线程进行操作,可能并不能提高效率,反而降低了效率. 如果你有非常多的执行时间非常短的操作,那么适合作用线程池来提高效率,而不是自行创建多线程. 线程池,就是我们先分配一些资源到池子里,当我们需要使用时,则从池子中获取,用完了,再放回池子里. .NET中的线程池是受CLR管理的,TheadTool类

C# -- 使用线程池 ThreadPool 执行多线程任务

1. 使用线程池 1 class Program 2 { 3 static void Main(string[] args) 4 { 5 WaitCallback wc1 = s =>{ 6 Console.WriteLine("线程ID:{0},开始执行", Thread.CurrentThread.ManagedThreadId); 7 Stopwatch stw = new Stopwatch(); 8 stw.Start(); 9 long result = SumNum