kafka综合介绍

设计目标

  • 高吞吐率。即使在非常廉价的商用机器上也能做到单机支持每秒100K条以上消息的传输。
  • 支持Kafka Server间的消息分区,及分布式消费,同时保证每个Partition内的消息顺序传输
  • 同时支持离线数据处理和实时数据处理
  • Scale out:支持在线水平扩展
  • 以时间复杂度为O(1)的方式提供消息持久化能力

性能比较

  • 对于RabbitMQ和Redis的入队和出队操作,各执行100万次,每10万次记录一次执行时间。测试数据分为128Bytes、512Bytes、1K和10K四个不同大小的数据。实验表明:入队时,当数据比较小时Redis的性能要高于RabbitMQ,而如果数据大小超过了10K,Redis则慢的无法忍受;出队时,无论数据大小,Redis都表现出非常好的性能,而RabbitMQ的出队性能则远低于Redis。

特性

  • 快速持久化,可以在O(1)的系统开销下进行消息持久化
  • 高吞吐,在一台普通的服务器上既可以达到10W/s的吞吐速率
  • 完全的分布式系统,Broker、Producer、Consumer都原生自动支持分布式,自动实现负载均衡
  • 支持Hadoop数据并行加载,对于像Hadoop的一样的日志数据和离线分析系统,但又要求实时处理的限制,这是一个可行的解决方案
  • Apache Kafka相对于ActiveMQ是一个非常轻量级的消息系统,除了性能非常好之外,还是一个工作良好的分布式系统

架构

  • Broker: Kafka集群包含一个或多个服务器,这种服务器被称为broker
  • Topic: 每条发布到Kafka集群的消息都有一个类别,这个类别被称为Topic。(物理上不同Topic的消息分开存储,逻辑上一个Topic的消息虽然保存于一个或多个broker上但用户只需指定消息的Topic即可生产或消费数据而不必关心数据存于何处)
  • Parition:  Parition是物理上的概念,每个Topic包含一个或多个Partition
  • Producer: 负责发布消息到Kafka broker
  • Consumer: 消息消费者,向Kafka broker读取消息的客户端。
  • Consumer Group: 每个Consumer属于一个特定的Consumer Group(可为每个Consumer指定group name,若不指定group name则属于默认的group)。
  • 拓扑结构:

          

如上图所示,一个典型的Kafka集群中包含若干Producer(可以是web前端产生的Page View,或者是服务器日志,系统CPU、Memory等),若干broker(Kafka支持水平扩展,一般broker数量越多,集群吞吐率越高),若干Consumer Group,以及一个Zookeeper集群。Kafka通过Zookeeper管理集群配置,选举leader,以及在Consumer Group发生变化时进行rebalance。Producer使用push模式将消息发布到broker,Consumer使用pull模式从broker订阅并消费消息。

时间: 2024-12-10 19:24:17

kafka综合介绍的相关文章

【原创】开源Math.NET基础数学类库使用(一)综合介绍

你还可以参考本博客其他.NET开源项目的相关文章: [原创]彩票预测算法:离散型马尔可夫链模型          Newlife XCode组件资源目录汇总[2013年版] [原创]开源.NET下的XML数据库介绍及入门          [原创].NET开源压缩组件介绍与入门 [开源].NET开源表达式计算组件介绍与使用          [原创]开源Word读写组件DocX介绍与入门 [原创]Matlab.NET混编调用Figure窗体                [原创]Matlab与.

开源Math.NET基础数学类库使用(01)综合介绍

原文:[原创]开源Math.NET基础数学类库使用(01)综合介绍 开源Math.NET基础数学类库使用系列文章总目录:   1.开源.NET基础数学计算组件Math.NET(一)综合介绍    2.开源.NET基础数学计算组件Math.NET(二)矩阵向量计算    3.开源.NET基础数学计算组件Math.NET(三)C#解析Matlab的mat格式   4.开源.NET基础数学类库使用Math.NET(四)C#解析Matrix Marke数据格式   5.开源.NET基础数学类库使用Mat

Kafka入门介绍

1. Kafka入门介绍 1.1 Apache Kafka是一个分布式的流平台.这到底意味着什么? 我们认为,一个流平台具有三个关键能力: ① 发布和订阅消息.在这方面,它类似一个消息队列或企业消息系统.(生产和消费消息) ② 以容错的方式存储消息流.(存储消息) ③ 当消息流发生时处理它们.(处理消息) 1.1.1 kafka的优势 它应用于两大类应用: ① 构建实时的流数据管道,可靠地获取系统和应用程序之间的数据.(获取数据) ② 构建实时流的应用程序,对数据流进行转换或反应.(处理数据)

消息队列之kafka(基础介绍)

一.关于JMS 1. JMS 的基础 ??JMS是Java提供的一套技术规范.即Java消息服务(Java message service).应用程序接口.是一个Java平台中关于面向消息中间件的API.用于在两个应用程序之间或者分布式系统中发送消息,进行异步通信.Java消息服务是一个与具体平台无关的API.??用来异构系统集成通信,缓解系统瓶颈. 提高系统的伸缩性.增强系统用户体验.使得系统模块化和组件化变得可行并更加灵活.JAVA2EE十三大规范:https://blog.csdn.net

【转帖】Kafka入门介绍

https://www.cnblogs.com/swordfall/p/8251700.html 最近在看hdoop的hdfs 以及看了下kafka的底层存储,发现分布式的技术基本上都是相同的. 都是通过增加一个coordinator的节点作为存储元数据, 将实体数据放到datanode 里面来提高容量.而且也跟微服务类似,将一个单体应用拆开分多份,放到不同的node节点中来 并且通过replication 来保证高可用.通过服务注册中心统一进行管理. 微服务 hadoop kafka 都是通过

Kafka简要介绍

介绍: Kafka是一个高吞吐量的分布是消息系统 ,原本开发自LinkedIn,用作LinkedIn的活动流(activity stream)和运营数据处理管道(pipeline)的基础.现在它已为多家不同类型的公司作为多种类型的数据管道(data pipeline)和消息系统使用. 现在Kafak作为apache的项目,被apache托管. 企业应用的背景: 企业集成的基本特点是把企业中现存的本不相干的各种应用进行集成.例如:一个企业可能想把财务系统和仓管系统进行集成,减少部门间结算和流通的成

kafka详细介绍,安装,配置

1.简介 Kafka is a distributed,partitioned,replicated commit logservice.它提供了类似于JMS的特性,但是在设计实现上完全不同,此外它并不是JMS规范的实现.kafka对消息保存时根据Topic进行归类,发送消息者成为Producer,消息接受者成为Consumer,此外kafka集群有多个kafka实例组成,每个实例(server)成为broker.无论是kafka集群,还是producer和consumer都依赖于zookeep

kafka 基础介绍

kafka 基础 kafka有四个核心API: 应用程序使用 Producer API 发布消息到1个或多个topic(主题). 应用程序使用 Consumer API 来订阅一个或多个topic,并处理产生的消息. 应用程序使用 Streams API 充当一个流处理器,从1个或多个topic消费输入流,并生产一个输出流到1个或多个输出topic,有效地将输入流转换到输出流. Connector API允许构建或运行可重复使用的生产者或消费者,将topic连接到现有的应用程序或数据系统.例如,

灰度图像--图像分割 综合介绍

学习DIP第40天 转载请标明本文出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些论坛转载后,图像无法正常显示,无法正常表达本人观点,对此表示很不满意.有些网站转载了我的博文,很开心的是自己写的东西被更多人看到了,但不开心的是这段话被去掉了,也没标明转载来源,虽然这并没有版权保护,但感觉还是不太好,出于尊重文章作者的劳动,转载请标明出处!!!! 文章代码已托管,欢迎共同开发:https://github.com/Tony-Tan/DIPpro