线性代数回顾(Linear Algebra Review)

3.1  矩阵和向量

3.2  加法和标量乘法

3.3  矩阵向量乘法

3.4  矩阵乘法

3.5  矩阵乘法的性质

3.6  逆、转置


3.1  矩阵和向量

时间: 2024-12-31 20:38:20

线性代数回顾(Linear Algebra Review)的相关文章

Coursera公开课机器学习:Linear Algebra Review(选修)

这节主要是回顾了下线性代数的一些简单知识. 矩阵与向量 矩阵 由$m\times n$个数$a _{ij}(i=1,2,...,m;j=1,2,...,n)$排成的$m$行$n$列的数表,称为$m$行$n$列的矩阵,简称$m\times n$矩阵,记作: $$ \matrix{A}= \begin{bmatrix} a _{11} & a _{12} & \cdots & a _{1n} \cr a _{21} & a _{22} & \cdots & a

Machine Learning - III. Linear Algebra Review (Week 1, Optional)

机器学习Machine Learning - Andrew NG courses学习笔记 矩阵和向量及其表示介绍 what are matrices矩阵 matrix is just another way for saying, is a 2D or a two dimensional array. dimension of the matrix is going to be written as the number of row times the number of columns in

线性代数导论 | Linear Algebra 课程

搞统计的线性代数和概率论必须精通,最好要能锻炼出直觉,再学机器学习才会事半功倍. 线性代数只推荐Prof. Gilbert Strang的MIT课程,有视频,有教材,有习题,有考试,一套学下来基本就入门了. 不多,一共10次课. 链接:https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/calendar/ SES # TOPICS KEY DATES 1 The geometry of linear e

线性代数《Linear Algebra and Its Application》学习总结

此文仅为学习记录,内容会包括一些数学概念,定义,个人理解的摘要.希望能够分享一些学习内容. 第一节:Row Reduction and Echelon Forms Echelon form: 行消元后的矩阵 Reduced echelon form: 行消元并且leading entry为1的矩阵. Echelon form and reduced echelon form are row equivalent to the original form. Span{v1, v2, v3,....

《Linear Algebra and Its Applications》- 线性方程组

同微分方程一样,线性代数也可以称得上是一门描述自然的语言,它在众多自然科学.经济学有着广阔的建模背景,这里笔者学识有限暂且不列举了,那么这片文章来简单的讨论一个问题——线性方程组. 首先从我们中学阶段就很熟系的二元一次方程组,我们采用换元(其实就是高斯消元)的方法.但是现在我们需要讨论更加一般的情况,对于线性方程,有如下形式: a1x1+a2x2+…anxn = b. 现在我们给出多个这样的方程构成方程组,我们是否有通用的解法呢? 在<Linear Algebra and Its Applica

《Linear Algebra and Its Applications》-矩阵运算

可以说第一章<Linear Algebra and Its Applications>着重介绍了线性代数中几个核心概念(向量.矩阵和线性方程组)之间的关系(方程的同解性),那么下面这本书开始分别介绍这几个核心概念,比如从这篇文章开始,会简单的介绍矩阵方面的内容. 首先对于我们定义的计算工具(矩阵),我们有必要研究其运算规律,这个方法在定义很多新的运算符号的时候都是适用的.矩阵的加减法这里就不用累述的,非常好理解,这篇文中我们主要来讨论矩阵的乘法运算的定义过程. 其实不管是从离散的角度还是在线性

读Linear Algebra -- Gilbert Strang

转眼间已经我的学士学位修读生涯快要到期了,重读线性代数,一是为了重新理解Algebra的的重要概念以祭奠大一刷过的计算题,二是为了将来的学术工作先打下一点点(薄弱的)基础.数学毫无疑问是指导着的科研方向与科学发展,每次读同一本好的数学书都能读出不同的韵味. P1-149 Strang在书的序言便给出了linear algebra的一以贯之之道,我们所看到一切的来源便在于Ax=b这个方程组中.虽然从向量矩阵.线性方程组到向量空间.线性变换,费了好大劲才将任意一个线性变化凝练到一个矩阵上,但对于Ax

机器学习单词记录--03章线性代数回顾

Matrices.matrix 矩阵   vectors 向量 array  排列 Element 元素 A matrix  is a  rectangular array of numbers,written between square brackets 矩阵是由数字组成的矩形阵列,并写在方括号内 Square bracket 方括号 a bunch of  一堆 Row 行  column 列 Matrix is just another way for saying ,2D or two

吴恩达《机器学习》课程总结(3)_线性代数回顾

学过线性代数的人,这节课内容完全没必要看 Q1矩阵和向量 几行几列即为矩阵.Aij表示第i行第j列. 只有一行或者一列的称为向量,向量是一种特殊矩阵.一般向量指的是列向量. Q2加法和标量乘法 加法:元素对应相加. 标量乘法:标量和矩阵每一个元素相乘. Q3矩阵向量乘法 Q4矩阵乘法 要求:第一个矩阵的列数等于第二个矩阵的行数,如m x n矩阵与nx 1矩阵相乘,结果为第一个矩阵的行数乘以第二个矩阵的列数. 结果Cij是第一个矩阵第i行和第二个矩阵第j列对应元素相乘求和的值. Q5矩阵乘法的性质