这节主要是回顾了下线性代数的一些简单知识. 矩阵与向量 矩阵 由$m\times n$个数$a _{ij}(i=1,2,...,m;j=1,2,...,n)$排成的$m$行$n$列的数表,称为$m$行$n$列的矩阵,简称$m\times n$矩阵,记作: $$ \matrix{A}= \begin{bmatrix} a _{11} & a _{12} & \cdots & a _{1n} \cr a _{21} & a _{22} & \cdots & a
机器学习Machine Learning - Andrew NG courses学习笔记 矩阵和向量及其表示介绍 what are matrices矩阵 matrix is just another way for saying, is a 2D or a two dimensional array. dimension of the matrix is going to be written as the number of row times the number of columns in
搞统计的线性代数和概率论必须精通,最好要能锻炼出直觉,再学机器学习才会事半功倍. 线性代数只推荐Prof. Gilbert Strang的MIT课程,有视频,有教材,有习题,有考试,一套学下来基本就入门了. 不多,一共10次课. 链接:https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/calendar/ SES # TOPICS KEY DATES 1 The geometry of linear e
此文仅为学习记录,内容会包括一些数学概念,定义,个人理解的摘要.希望能够分享一些学习内容. 第一节:Row Reduction and Echelon Forms Echelon form: 行消元后的矩阵 Reduced echelon form: 行消元并且leading entry为1的矩阵. Echelon form and reduced echelon form are row equivalent to the original form. Span{v1, v2, v3,....
同微分方程一样,线性代数也可以称得上是一门描述自然的语言,它在众多自然科学.经济学有着广阔的建模背景,这里笔者学识有限暂且不列举了,那么这片文章来简单的讨论一个问题——线性方程组. 首先从我们中学阶段就很熟系的二元一次方程组,我们采用换元(其实就是高斯消元)的方法.但是现在我们需要讨论更加一般的情况,对于线性方程,有如下形式: a1x1+a2x2+…anxn = b. 现在我们给出多个这样的方程构成方程组,我们是否有通用的解法呢? 在<Linear Algebra and Its Applica
可以说第一章<Linear Algebra and Its Applications>着重介绍了线性代数中几个核心概念(向量.矩阵和线性方程组)之间的关系(方程的同解性),那么下面这本书开始分别介绍这几个核心概念,比如从这篇文章开始,会简单的介绍矩阵方面的内容. 首先对于我们定义的计算工具(矩阵),我们有必要研究其运算规律,这个方法在定义很多新的运算符号的时候都是适用的.矩阵的加减法这里就不用累述的,非常好理解,这篇文中我们主要来讨论矩阵的乘法运算的定义过程. 其实不管是从离散的角度还是在线性
Matrices.matrix 矩阵 vectors 向量 array 排列 Element 元素 A matrix is a rectangular array of numbers,written between square brackets 矩阵是由数字组成的矩形阵列,并写在方括号内 Square bracket 方括号 a bunch of 一堆 Row 行 column 列 Matrix is just another way for saying ,2D or two