内存分配机制

转载自:http://www.cnblogs.com/daocaoren/archive/2011/06/29/2092957.html

  ,就是那些由编译器在需要的时候分配,在不需要的时候自动清除的变量的存储区。里面的变量通常是局部变量、函数参数等。在一个进程中,位于用户虚拟地址空间顶部的是用户栈,编译器用它来实现函数的调用。和堆一样,用户栈在程序执行期间可以动态地扩展和收缩。

  ,就是那些由 new 分配的内存块,他们的释放编译器不去管,由我们的应用程序去控制,一般一个 new 就要对应一个 delete。如果程序员没有释放掉,那么在程序结束后,操作系统会自动回收。堆可以动态地扩展和收缩。

  自由存储区,就是那些由 malloc 等分配的内存块,他和堆是十分相似的,不过它是用 free 来结束自己的生命的。

  全局/静态存储区,全局变量和静态变量被分配到同一块内存中,在以前的 C 语言中,全局变量又分为初始化的和未初始化的(初始化的全局变量和静态变量在一块区域,未初始化的全局变量与静态变量在相邻的另一块区域,同时未被初始化的对象存储区可以通过 void* 来访问和操纵,程序结束后由系统自行释放),在 C++ 里面没有这个区分了,他们共同占用同一块内存区。

  常量存储区,这是一块比较特殊的存储区,他们里面存放的是常量,不允许修改(当然,你要通过非正当手段也可以修改,而且方法很多)

  明确区分堆与栈

  在 BBS 上,堆与栈的区分问题,似乎是一个永恒的话题,由此可见,初学者对此往往是混淆不清的,所以我决定拿他第一个开刀。

  首先,我们举一个例子:

void f() { int* p=newint[5]; }

  这条短短的一句话就包含了堆与栈,看到 new,我们首先就应该想到,我们分配了一块堆内存,那么指针 p 呢?他分配的是一块栈内存,所以这句话的意思就是:在栈内存中存放了一个指向一块堆内存的指针 p。在程序会先确定在堆中分配内存的大小,然后调用 operator new 分配内存,然后返回这块内存的首地址,放入栈中,他在 VC6 下的汇编代码如下:

  00401028push 14h

  0040102Acall operator new (00401060)

  0040102Fadd esp,4

  00401032mov dword ptr [ebp-8],eax

  00401035mov eax,dword ptr [ebp-8]

  00401038mov dword ptr [ebp-4],eax

  这里,我们为了简单并没有释放内存,那么该怎么去释放呢?是 delete p 么?噢,错了,应该是 delete []p,这是为了告诉编译器:我删除的是一个数组,VC6 就会根据相应的 Cookie 信息去进行释放内存的工作。

  好了,我们回到我们的主题:堆和栈究竟有什么区别?

  主要的区别由以下几点:

  1、管理方式不同;

  2、空间大小不同;

  3、能否产生碎片不同;

  4、生长方向不同;

  5、分配方式不同;

  6、分配效率不同;

  管理方式:对于栈来讲,是由编译器自动管理,无需我们手工控制;对于堆来说,释放工作由程序员控制,容易产生memory leak。

  空间大小:一般来讲在 32 位系统下,堆内存可以达到4G的空间,从这个角度来看堆内存几乎是没有什么限制的。但是对于栈来讲,一般都是有一定的空间大小的,例如,在VC6下面,默认的栈空间大小是1M(好像是,记不清楚了)。当然,我们可以修改:打开工程,依次操作菜单如下:Project->Setting->Link,在 Category 中选中 Output,然后在 Reserve 中设定堆栈的最大值和 commit。注意:reserve 最小值为 4Byte;commit 是保留在虚拟内存的页文件里面,它设置的较大会使栈开辟较大的值,可能增加内存的开销和启动时间。

  碎片问题:对于堆来讲,频繁的 new/delete 势必会造成内存空间的不连续,从而造成大量的碎片,使程序效率降低。对于栈来讲,则不会存在这个问题,因为栈是先进后出的队列,他们是如此的一一对应,以至于永远都不可能有一个内存块从栈中间弹出,在他弹出之前,在他上面的后进的栈内容已经被弹出,详细的可以参考数据结构,这里我们就不再一一讨论了。

  生长方向:对于堆来讲,生长方向是向上的,也就是向着内存地址增加的方向;对于栈来讲,它的生长方向是向下的,是向着内存地址减小的方向增长。

  分配方式:堆都是动态分配的,没有静态分配的堆。栈有2种分配方式:静态分配和动态分配。静态分配是编译器完成的,比如局部变量的分配。动态分配由 malloc 函数进行分配,但是栈的动态分配和堆是不同的,他的动态分配是由编译器进行释放,无需我们手工实现。

  分配效率:栈是机器系统提供的数据结构,计算机会在底层对栈提供支持:分配专门的寄存器存放栈的地址,压栈出栈都有专门的指令执行,这就决定了栈的效率比较高。堆则是 C/C++ 函数库提供的,它的机制是很复杂的,例如为了分配一块内存,库函数会按照一定的算法(具体的算法可以参考数据结构/操作系统)在堆内存中搜索可用的足够大小的空间,如果没有足够大小的空间(可能是由于内存碎片太多),就有可能调用系统功能去增加程序数据段的内存空间,这样就有机会分到足够大小的内存,然后进行返回。显然,堆的效率比栈要低得多。

  从这里我们可以看到,堆和栈相比,由于大量 new/delete 的使用,容易造成大量的内存碎片;由于没有专门的系统支持,效率很低;由于可能引发用户态和核心态的切换,内存的申请,代价变得更加昂贵。所以栈在程序中是应用最广泛的,就算是函数的调用也利用栈去完成,函数调用过程中的参数,返回地址,EBP 和局部变量都采用栈的方式存放。所以,我们推荐大家尽量用栈,而不是用堆。

  虽然栈有如此众多的好处,但是由于和堆相比不是那么灵活,有时候分配大量的内存空间,还是用堆好一些。

  无论是堆还是栈,都要防止越界现象的发生(除非你是故意使其越界),因为越界的结果要么是程序崩溃,要么是摧毁程序的堆、栈结构,产生以想不到的结果,就算是在你的程序运行过程中,没有发生上面的问题,你还是要小心,说不定什么时候就崩掉,那时候 debug 可是相当困难的 :)

  对了,还有一件事,如果有人把堆栈合起来说,那它的意思是栈,可不是堆,呵呵,清楚了?

  static 用来控制变量的存储方式和可见性

  函数内部定义的变量,在程序执行到它的定义处时,编译器为它在栈上分配空间,函数在栈上分配的空间在此函数执行结束时会释放掉,这样就产生了一个问题: 如果想将函数中此变量的值保存至下一次调用时,如何实现? 最容易想到的方法是定义一个全局的变量,但定义为一个全局变量有许多缺点,最明显的缺点是破坏了此变量的访问范围(使得在此函数中定义的变量,不仅仅受此 函数控制)。需要一个数据对象为整个类而非某个对象服务,同时又力求不破坏类的封装性,即要求此成员隐藏在类的内部,对外不可见。

  static 的内部机制

  静态数据成员要在程序一开始运行时就必须存在。因为函数在程序运行中被调用,所以静态数据成员不能在任何函数内分配空间和初始化。这样,它的空间分配有三个可能的地方,一是作为类的外部接口的头文件,那里有类声明;二是类定义的内部实现,那里有类的成员函数定义;三是应用程序的 main()函数前的全局数据声明和定义处。

  静态数据成员要实际地分配空间,故不能在类的声明中定义(只能声明数据成员)。类声明只声明一个类的“尺寸和规格”,并不进行实际的内存分配,所以在类声明中写成定义是错误的。它也不能在头文件中类声明的外部定义,因为那会造成在多个使用该类的源文件中,对其重复定义。

  static 被引入以告知编译器,将变量存储在程序的静态存储区而非栈上空间,静态数据成员按定义出现的先后顺序依次初始化,注意静态成员嵌套时,要保证所嵌套的成员已经初始化了。消除时的顺序是初始化的反顺序。

  static 的优势

  可以节省内存,因为它是所有对象所公有的,因此,对多个对象来说,静态数据成员只存储一处,供所有对象共用。静态数据成员的值对每个对象都是一样,但它的 值是可以更新的。只要对静态数据成员的值更新一次,保证所有对象存取更新后的相同的值,这样可以提高时间效率。引用静态数据成员时,采用如下格式:

  <类名>::<静态成员名>

  如果静态数据成员的访问权限允许的话(即 public 的成员),可在程序中,按上述格式来引用静态数据成员。

  

Ps

  (1) 类的静态成员函数是属于整个类而非类的对象,所以它没有this指针,这就导致了它仅能访问类的静态数据和静态成员函数。

  (2) 不能将静态成员函数定义为虚函数。

  (3) 由于静态成员声明于类中,操作于其外,所以对其取地址操作,就多少有些特殊,变量地址是指向其数据类型的指针,函数地址类型是一个“nonmember 函数指针”。

  (4) 由于静态成员函数没有 this 指针,所以就差不多等同于 nonmember 函数,结果就产生了一个意想不到的好处:成为一个 callback 函数,使得我们得以将 c++ 和 c-based x window 系统结合,同时也成功的应用于线程函数身上。

  (5) static 并没有增加程序的时空开销,相反她还缩短了子类对父类静态成员的访问时间,节省了子类的内存空间。

  (6) 静态数据成员在<定义或说明>时前面加关键字 static。

  (7) 静态数据成员是静态存储的,所以必须对它进行初始化。

  (8) 静态成员初始化与一般数据成员初始化不同:

  初始化在类体外进行,而前面不加 static,以免与一般静态变量或对象相混淆;

  初始化时不加该成员的访问权限控制符 private、public;

  初始化时使用作用域运算符来标明它所属类;

  所以我们得出静态数据成员初始化的格式:

  <数据类型><类名>::<静态数据成员名>=<值>

  (9) 为了防止父类的影响,可以在子类定义一个与父类相同的静态变量,以屏蔽父类的影响。这里有一点需要注意:我们说静态成员为父类和子类共享,但我们有重复定义了静态成员,这会不会引起错误呢?不会,我们的编译器采用了一种绝妙的手法:name-mangling 用以生成唯一的标志。

分类: C/C++

时间: 2024-11-06 07:43:18

内存分配机制的相关文章

Go语言内存分配机制

前言: 本文是学习<<go语言程序设计>> -- 清华大学出版社(王鹏 编著) 的2014年1月第一版 做的一些笔记 , 如有侵权, 请告知笔者, 将在24小时内删除, 转载请注明出处! Go语言有两种内存分配机制 , 分别是内置函数 new() 和make(). - new() - 定义: func new(Type) * Type - 返回值是一个内存块指针 - new() 是一个内置函数, 不同于其他语言中的new操作符, 它只将内存清零, 而不是初始化内存. - make(

java内存分配机制

java内存分配机制 通过这几天对一个内存溢出程序的监控,学习了程序运行时对内存的使用机制,在这里和大家分享下. Java程序运行在JVM(Java  Virtual Machine,Java虚拟机)上,可以把JVM理解成Java程序和操作系统之间的桥梁,JVM实现了Java的平台无关性,由此可见JVM的重要性.所以在学习Java内存分配原理的时候一定要牢记这一切都是在JVM中进行的,JVM是内存分配原理的基础与前提.         一个完整的Java程序运行过程会涉及以下内存区域: 寄存器:

memcached学习——memcached的内存分配机制Slab Allocation、内存使用机制LRU、常用监控记录(四)

内存分配机制Slab Allocation 本文参考博客:https://my.oschina.net/bieber/blog/505458 Memcached的内存分配是以slabs为单位的,会根据初始chunk大小.增长因子.存储数据的大小实际划分出多个不同的slabs class,slab class中包含若干个等大小的trunk和一个固定48byte的item信息.trunk是按页存储的,每一页成为一个page(默认1M). 1.slabs.slab class.page三者关系: sl

list的内存分配机制分析

该程序演示了list在内存分配时候的问题.里面的备注信息是我的想法. /* 功能说明: list的内存分配机制分析. 代码说明: list所管理的内存地址可以是不连续的.程序在不断的push_back的过程中,程序仅会将操作的元素进行复制一份,保存到list中.通过复制构造函数和析构函数,可以看到这些操作. 实现方式: 限制条件或者存在的问题: 无 */ #include <iostream> #include <string> #include <list> #inc

vector的内存分配机制分析

该程序初步演示了我对vector在分配内存的时候的理解.可能有误差,随着理解的改变,改代码可以被修改. 1 /* 2 功能说明: 3 vector的内存分配机制分析. 4 代码说明: 5 vector所管理的内存地址是连续的.程序在不断的push_back的过程中,如果当前所管理的内存不能装下新的元素的时候,程序会创建更大的地址连续的空间来保存更多的元素. 6 这种机制会引起大量的无用的复制和删除操作.如果vector的元素为类结构的时候,他就会有很多临时变量产生.通过复制构造函数和析构函数,可

map的内存分配机制分析

该程序演示了map在形成的时候对内存的操作和分配. 因为自己对平衡二叉树的创建细节理解不够,还不太明白程序所显示的日志.等我明白了,再来修改这个文档. /* 功能说明: map的内存分配机制分析. 代码说明: map所管理的内存地址可以是不连续的.如果key是可以通过<排序的,那么,map最后的结果是有序的.它是通过一个平衡二叉树来保存数据.所以,其查找效率极高. 实现方式: 限制条件或者存在的问题: 无 */ #include <iostream> #include <strin

Memcache简介 &amp; 内存分配机制

关于这个东西里面到底应该存放数据网上一直有很多种说法,有的说sql进行md5之后作为键值,结果作为内容存放,也有人说按照业务逻辑错放,反正是炒的不亦乐乎. 本人经过将近2年的实践,最后还是觉得要根据业务逻辑来存放,不能将sql加密然后对应结果集存放.这样做,基本上无法实现数据的及时更新,只能依靠memcahce的过期时间来更新.资讯类的静态数据比较合适,不过这种网站一般会做静态化的处理,所以memcache也发挥不了太大用途.真正有用武之地的地方是社区类网站,这类网站大部分是动态数据,而且性能要

[C++]内存管理器--谈论如何自定义内存分配机制

内存管理器–谈论如何自定义内存分配机制 Memory pools, also called fixed-size blocks allocation, is the use of pools for memory management that allows dynamic memory allocation comparable to malloc or C++'s operator new. As those implementations suffer from fragmentation

Java中的内存分配机制

Java的内存分为两种:一种是栈内存,一种是堆内存. 在函数中定义的一些基本类型变量和对象的引用都在函数的栈内存中分配.当在一个代码块中定义一个变量的时候,java就在栈中为其分配内存,当超过作用域的时候内存自动释放. 对内存用来存放new创建的对象和数组.在堆中分配的内存,由java虚拟机的垃圾回收机器管理.java的堆是运行时数据区,堆的优势是可以动态的分配内存大小,生存周期也不必事先告诉编译器,但是,由于是动态分配,存取速度慢. 栈的优势是比堆的存取速度快,仅次于寄存器,栈数据可以共享,但

JVM虚拟机-03、JVM内存分配机制与垃圾回收算法

JVM虚拟机-03.JVM内存分配机制与垃圾回收算法 1 JVM内存分配与回收 1.1 对象优先在Eden区分配 大多数情况下,对象在新生代中?Eden?区分配.当?Eden?区没有足够空间进行分配时,虚拟机将发起一次Minor?GC.我们来进行实际测试一下.在测试之前我们先来看看?Minor?GC和Full?GC?有什么不同呢? Minor?GC/Young?GC:指发生新生代的的垃圾收集动作,MinorGC非常频繁,回收速度一般也比较快. Major?GC/Full?GC:一般会回收老年代,