Trace Logging Level

Trace

In functions which support this level, details every parameter and operation to help diagnose subtle bugs.

This should only be enabled for specific areas of interest or the log volume will be overwhelming.

Some system performance degradation should be expected.

Define TRACE logging level

TRACE is a logging keyword that is understood by most logging tools.

OpenStack has repurposed this in the past to not be TRACE logging

but instead be used whenever a Stacktrace was dumped.

Stack traces should be logged at ERROR level (they currently aren‘t).

TRACE should be defined as log level 5 in python (which is lower than DEBUG),

and LOG.trace support should be added to oslo logger 1.8.0.

LOG.trace can then be used for deep tracing of code.

Oslo.log logging level

(1) Critical :

  ZOMG! Cluster on FIRE! Call all pagers, wake up everyone.

  This is an unrecoverable error with a service that has or probably will lead to service death or massive degredation.

(2) Error:

  Serious issue with cloud, administrator should be notified immediately via email/pager. On call people expected to respond.

(3) Warning:

  Something is not right, should get looked into during the next work week.

  Administrators should be working through eliminating warnings as part of normal work.

(4) Info:

  normal status messages showing measureable units of positive work passing through under normal functioning of the system.

  Should not be so verbose as to overwhelm real signal with noise. Should not be continuous "I‘m alive!" messages.

(5) Debug:

  developer logging level, only enable if you are interested in reading through a ton of additional information about what is going on.

(6) Trace:

  In functions which support this level, details every parameter and operation to help diagnose subtle bugs.

  This should only be enabled for specific areas of interest or the log volume will be overwhelming.

  Some system performance degradation should be expected.

Link:  https://github.com/openstack/openstack-specs/blob/master/specs/log-guidelines.rst

时间: 2024-11-09 16:48:20

Trace Logging Level的相关文章

spring-cloud: eureka之:ribbon负载均衡自定义配置(二)

有默认配置的话基本上就是轮询接口,现在我们改用自定义配置,同时支持:轮询,随机接口读取 准备工作: 1.eureka服务 2.两个user服务: 项目名:spring-cloud-user接口:7900/7901 3.两个user服务:项目名:spring-cloud-user2接口:8800/8801 4.movie服务,读取/调用user信息接口 eureka启动文件加入@EnableEurekaServer注解 @EnableEurekaServer @SpringBootApplicat

springboot整合Quartz实现动态配置定时任务

前言 在我们日常的开发中,很多时候,定时任务都不是写死的,而是写到数据库中,从而实现定时任务的动态配置,下面就通过一个简单的示例,来实现这个功能. 一.新建一个springboot工程,并添加依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-jpa</artifactId></dependency>

springboot 连接sqlserver

1,配置application.properties #sqlserver configure spring.datasource.url =jdbc:sqlserver://localhost:1433;DatabaseName=myDatabase spring.datasource.username=sa spring.datasource.password=sa spring.datasource.driverClassName =com.microsoft.sqlserver.jdbc

Spring cloud gateway自定义filter以及负载均衡

自定义全局filter package com.example.demo; import java.nio.charset.StandardCharsets; import org.apache.commons.logging.Log; import org.apache.commons.logging.LogFactory; import org.springframework.cloud.gateway.filter.GatewayFilter; import org.springframe

Spring/Hibernate Improved SQL Logging with log4jdbc---reference

Hibernate provides SQL logging out of the box, but such logging only shows prepared statements, and not the actual SQL queries sent to the database. It also does not log the execution time of each query, which is useful for performance troubleshootin

日志组件系列:(2)commons logging和log4j实战

(1).下载组件,引入jar包 (2).配置 (3).使用API 1.下载组件,引入jar包 jar包 下载地址 log4j-1.2.17.jar http://logging.apache.org/log4j/1.2/ commons-logging-1.2.jar http://commons.apache.org/proper/commons-logging/download_logging.cgi 2.配置 在项目的src目录下添加log4j.properties文件,配置如下: log

SpringBoot文档翻译系列——26.日志logging

原创作品,可以转载,但是请标注出处地址:http://www.cnblogs.com/V1haoge/p/7613854.html 这是SpringBoot的日志内容 26 日志 Spring使用CommonLogging作为内置日志记录工具,但也保留了底层日志的实现.默认的配置提供了Java Util Logging.Log4J2和LogBack.在不同情况下,可以通过预先的配置来选择控制台输出或者文件输出. 默认情况下,如果你使用了SpringBoot的"Starters",将会使

python中logging模块的使用

一.基本用法 只需要基本的配置,就可以使用了. import logging def fun2(): logging.basicConfig(filename="fun2.log",format="%(asctime)s %(message)s",level=logging.DEBUG) logging.debug("this is fun2 log") 二.进行详细配置 首先添加一个fileHandler来配置记录的文件,Formatter来设

java.util.logging.Logger使用详解

一.创建Logger对象 static Logger getLogger(String name)           为指定子系统查找或创建一个 logger. static Logger getLogger(String name, String resourceBundleName)           为指定子系统查找或创建一个 logger. 注意:name是Logger的名称,当名称相同时候,同一个名称的Logger只创建一个. 二.Logger的级别 比log4j的级别详细,全部定