条件变量pthread_cond_t怎么用

 1 #include <pthread.h>
 2 #include <stdio.h>
 3 #include <stdlib.h>
 4 pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;/*初始化互斥锁*/
 5 pthread_cond_t cond = PTHREAD_COND_INITIALIZER;/*初始化条件变量*/
 6 void *thread1(void *);
 7 void *thread2(void *);
 8 int i=1;
 9 int main(void)
10 {
11     pthread_t t_a;
12     pthread_t t_b;
13     pthread_create(&t_a,NULL,thread1,(void *)NULL);/*创建进程t_a*/
14     pthread_create(&t_b,NULL,thread2,(void *)NULL); /*创建进程t_b*/
15     pthread_join(t_a, NULL);/*等待进程t_a结束*/
16     pthread_join(t_b, NULL);/*等待进程t_b结束*/
17     pthread_mutex_destroy(&mutex);
18     pthread_cond_destroy(&cond);
19     exit(0);
20 }
21 void *thread1(void *junk)
22 {
23     for(i=1;i<=6;i++)
24     {
25         pthread_mutex_lock(&mutex);/*锁住互斥量*/
26         printf("thread1: lock %d/n", __LINE__);
27         if(i%3==0){
28             printf("thread1:signal 1  %d/n", __LINE__);
29             pthread_cond_signal(&cond);/*条件改变,发送信号,通知t_b进程*/
30             printf("thread1:signal 2  %d/n", __LINE__);
31             sleep(1);
32         }
33         pthread_mutex_unlock(&mutex);/*解锁互斥量*/
34         printf("thread1: unlock %d/n/n", __LINE__);
35         sleep(1);
36     }
37 }
38 void *thread2(void *junk)
39 {
40     while(i<6)
41     {
42         pthread_mutex_lock(&mutex);
43         printf("thread2: lock %d/n", __LINE__);
44         if(i%3!=0){
45             printf("thread2: wait 1  %d/n", __LINE__);
46             pthread_cond_wait(&cond,&mutex);/*解锁mutex,并等待cond改变*/
47             printf("thread2: wait 2  %d/n", __LINE__);
48         }
49         pthread_mutex_unlock(&mutex);
50         printf("thread2: unlock %d/n/n", __LINE__);
51         sleep(1);
52     }
53 }  

编译:

[[email protected] threads]$ gcc thread_cond.c -lpthread -o tcd

以下是程序运行结果:

[[email protected] threads]$ ./tcd 
thread1: lock 30
thread1: unlock 40

thread2: lock 52
thread2: wait 1 55
thread1: lock 30
thread1: unlock 40

thread1: lock 30
thread1:signal 1 33
thread1:signal 2 35
thread1: unlock 40

thread2: wait 2 57
thread2: unlock 61

thread1: lock 30
thread1: unlock 40

thread2: lock 52
thread2: wait 1 55
thread1: lock 30
thread1: unlock 40

thread1: lock 30
thread1:signal 1 33
thread1:signal 2 35
thread1: unlock 40

thread2: wait 2 57
thread2: unlock 61

这里的两个关键函数就在pthread_cond_wait和pthread_cond_signal函数。

本例中:

线程一先执行,获得mutex锁,打印,然后释放mutex锁,然后阻塞自己1秒。

线程二此时和线程一应该是并发的执行
 ,这里是一个要点,为什么说是线程此时是并发的执行,因为此时不做任何干涉的话,是没有办法确定是线程一先获得执行还是线程二先获得执行,到底那个线程先获得执行,取决于操作系统的调度,想刻意的让线程2先执行,可以让线程2一出来,先sleep一秒。
这里并发执行的情况是,线程一先进入循环,然后获得锁,此时估计线程二执行,阻塞在
pthread_mutex_lock(&mutex);
这行语句中,直到线程1释放mutex锁
pthread_mutex_unlock(&mutex);/*解锁互斥量*/
然后线程二得已执行,获取metux锁,满足if条件,到pthread_cond_wait (&cond,&mutex);/*等待*/
这里的线程二阻塞,不仅仅是等待cond变量发生改变,同时释放mutex锁 ,因为当时看书没有注意,所以这里卡了很久。
mutex锁释放后,线程1终于获得了mutex锁,得已继续运行,当线程1的if(i%3==0)的条件满足后,通过pthread_cond_signal发送信号,告诉等待cond的变量的线程(这个情景中是线程二),cond条件变量已经发生了改变。

不过此时线程二并没有立即得到运行 ,因为线程二还在等待mutex锁的释放,所以线程一继续往下走,直到线程一释放mutex锁,线程二才能停止等待,打印语句,然后往下走通过pthread_mutex_unlock(&mutex)释放mutex锁,进入下一个循环。

转自:http://blog.csdn.net/zclongembedded/article/details/7337729

时间: 2024-12-23 21:08:06

条件变量pthread_cond_t怎么用的相关文章

线程中的 条件变量 pthread_cond_t

#include <pthread.h> #include <stdio.h> #include <stdlib.h> pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;/*初始化互斥锁*/ pthread_cond_t cond = PTHREAD_COND_INITIALIZER;/*初始化条件变量*/ void *thread1(void *); void *thread2(void *); int i=1; in

多线程同步条件变量(转载)

最近看<UNIX环境高级编程>多线程同步,看到他举例说条件变量pthread_cond_t怎么用,愣是没有看懂,只好在网上找了份代码,跑了跑,才弄明白 [cpp] view plaincopy #include <pthread.h> #include <stdio.h> #include <stdlib.h> pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;/*初始化互斥锁*/ pthread_cond_

进程间同步(1)&mdash;&mdash;条件变量和互斥量

1. 概述 条件变量和互斥量是最基本的同步形式,总是用于同步同一个进程的各个线程间同步. 当把条件变量或互斥量放在共享内存区时,可用于进程间同步. 同样的情况还有读写锁,它们都是随进程的持续性.   2.互斥锁 互斥锁指代相互排斥,用于保护临界区.多个线程和多个进程分享的共享数据. 静态初始化:static pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER; 动态初始化:互斥锁是动态分配的,pthread_mutex_init(&mutex);初始

(转载)Linux 多线程条件变量同步

条件变量是线程同步的另一种方式,实际上,条件变量是信号量的底层实现,这也就意味着,使用条件变量可以拥有更大的自由度,同时也就需要更加小心的进行同步操作.条件变量使用的条件本身是需要使用互斥量进行保护的,线程在改变条件状态之前必须首先锁住互斥量,其他线程在获得互斥量之前不会察觉到这种改变,因为互斥量必须在锁定之后才能计算条件. 模型 #include<pthread.h> pthread_cond_t cond //准备条件变量 pthread_cond_t cond = PTHREAD_CON

linux网络编程-posix条件变量(40)

举一个列子来说明条件变量: 假设有两个线程同时访问全局变量n,初始化值是0, 一个线程进入临界区,进行互斥操作,线程当n大于0的时候才执行下面的操作,如果n不大于0,该线程就一直等待. 另外一个线程也是进入临界区,修改n的值,当修改了n的值后,需要向等待中的线程发送通知,修改了n的值.但是现在存在这样的一个问题:当第一个线程进入临界区的时候,第一个线程一直处在等待n改变的状态,第二个线程是无法进入临界区的修改n的值的,这样第一个线程 就处于死锁了.上面这个问题可以时候条件变量来解决. 条件变量也

3线程同步:条件变量

1 条件变量 条件变量给多个线程提供了一个汇合的场所. 依赖的头文件 #include<pthread.h> 函数声明 定义分配条件变量 pthread_cond_t cond =PTHREAD_COND_INITIALIZER; int pthread_cond_init(pthread_cond_t*restrict cond, const pthread_condattr_t *restrict attr); 名称: pthread_cond_init 功能: initialize co

线程同步之条件变量使用手记

由来: 最近一直在想怎么高效率的在IO线程接收到数据时通知逻辑线程(基于线程池)工作的问题,像网络编程的服务器模型的一些模型都需要用到这个实现,下面我这里简单的罗列一个多线程的网络服务器模型 半同步/半异步(half-sync/half-async): 许多餐厅使用 半同步/半异步 模式的变体.例如,餐厅常常雇佣一个领班负责迎接顾客,并在餐厅繁忙时留意给顾客安排桌位,为等待就餐的顾客按序排队是必要的.领班由所有顾客"共享",不能被任何特定顾客占用太多时间.当顾客在一张桌子入坐后,有一个

线程同步与互斥之条件·变量

条件变量(condition variable) 线程间的同步与互斥技术,主要以互斥锁和条件变量为主,条件变量和互斥所的配合使用可以很好的处理对于条件等待的线程间的同步问题.举个例子:消费者和生产者问题. 消费者与生产者最基本的关系是服务与被服务的关系,但是在线程同步与互斥中强调的是两者访问资源的关系.首先生产与消费的关系为:同步与互斥,生产与生产的关系为:互斥,消费与消费的关系为:互斥.所以维护这三种关系的有两类人:生产者与消费者.并且生产数据与消费数据必须有场所. 所以将其简述为三种关系两类

线程同步(条件变量、信号量)以及死锁

死锁:指两个或两个以上进程(或线程)在执行过程中,因争夺资源而造成的一种互相等待现象,若无外力作用,它们都将无法继续推进下去. 例:交叉死锁:线程1获得了锁1,线程2获得了锁2,此时线程1调用lock想获得锁2,需挂起等待线程2释放锁2,而线程2也想获得锁1,也需挂起等待线程1释放锁1,此时两个线程都挂起等待 产生死锁的四个必要条件: (1):互斥条件(一个资源每次只能被一个进程或线程使用) (2):请求与保持条件(一个进程或线程因请求资源而阻塞时,对已获得的资源不释放) (3):不剥夺条件(此