LibreOJ #2219. 「HEOI2014」大工程

二次联通门 : LibreOJ #2219. 「HEOI2014」大工程

/*
    LibreOJ #2219. 「HEOI2014」大工程

    虚树 + dp
    对于每次的关键点建好虚树后

    考虑树形dp

    dp[i] 表示在以i为根的子树路径总长
    size[i] 表示在以i为根的子树中关键点的个数

    maxn为以i为根的子树中到关键点到根最长的路径长

    ans1自己推一推就好
    对于ans2
    如果i是关键点,则直接用maxn[i]更新答案
    否则用maxn[i]+maxn[child[i]]+dis(i,son[i])更新
    ans3同理
*/
#include <cstdio>
#include <iostream>
#include <algorithm>
#define INF 1e9

#define Max 1000004

const int BUF = 100000100;

char Buf[BUF], *buf = Buf;
void read (int &now)
{
    for (now = 0; !isdigit (*buf); ++ buf);
    for (; isdigit (*buf); now = now * 10 + *buf - ‘0‘, ++ buf);
}
struct Edge
{
    int to, next, w;
};
int deep[Max];

inline int min (int a, int b)
{
    return a < b ? a : b;
}

inline int max (int a, int b)
{
    return a > b ? a : b;
}

struct Graph
{
    Edge e[Max << 1];
    int C, list[Max];

    inline void In (int from, int to)
    {
        if (from == to) return ;
        e[++ C].to = to;
        e[C].next = list[from];
        list[from] = C;
        e[C].w = deep[to] - deep[from];
    }

    inline void Clear () { C = 0;}
};
int dfn[Max], Dfs_Clock;
inline bool Comp (int a, int b)
{
    return dfn[a] < dfn[b];
}

void swap (int &a, int &b)
{
    int now = a;
    a = b;
    b = now;
}
class Tree_Chain_Get
{
    private : Graph G;
              int size[Max], father[Max], chain[Max], son[Max];

    public :

        void Dfs_1 (int now, int Father)
        {
            size[now] = 1, father[now] = Father;
               deep[now] = deep[Father] + 1, dfn[now] = ++ Dfs_Clock;
            for (int i = G.list[now]; i; i = G.e[i].next)
                if (G.e[i].to != Father)
                {
                    Dfs_1 (G.e[i].to, now);
                    size[now] += size[G.e[i].to];
                    if (size[son[now]] < size[G.e[i].to])
                       son[now] = G.e[i].to;
                }
        }

        void Dfs_2 (int now, int point)
        {
            chain[now] = point;
            if (son[now])
                Dfs_2 (son[now], point);
            else return ;
            for (int i = G.list[now]; i; i = G.e[i].next)
                if (G.e[i].to != son[now] && G.e[i].to != father[now])
                    Dfs_2 (G.e[i].to, G.e[i].to);
        }

        inline void Insert_edges (const int &M)
        {
            for (int i = 1, x, y; i <= M; i ++)
            {
                read (x), read (y);
                G.In (x, y), G.In (y, x);
            }
            Dfs_1 (1, 0);
            Dfs_2 (1, 1);
        }

        inline int Get_Lca (int x, int y)
        {
            for (; chain[x] != chain[y]; )
            {
                if (deep[chain[x]] < deep[chain[y]])
                    swap (x, y);
                x = father[chain[x]];
            }
            return deep[x] < deep[y] ? x : y;
        }
};

Tree_Chain_Get Lca;
class Virtual_Tree
{
    private : 

        Graph T;
        int visit[Max];
        int key[Max], Stack[Max], maxn[Max], minn[Max], Total;
        long long Answer_1, size[Max], dp[Max];
        int Answer_2, Answer_3;

    public :

        void Dp (int now)
        {
            size[now] = visit[now];
            dp[now] = 0;
            minn[now] = visit[now] ? 0 : INF;
            maxn[now] = visit[now] ? 0 : -INF;
            int to;
            for (int i = T.list[now]; i; i = T.e[i].next)
            {
                to = T.e[i].to;
                Dp (to);
                Answer_1 += (dp[now] + size[now] * T.e[i].w) * size[to] + dp[to] * size[now];
                size[now] += size[to];
                dp[now] += dp[to] + T.e[i].w * size[to];
                Answer_2 = min (Answer_2, minn[now] + minn[to] + T.e[i].w);
                Answer_3 = max (Answer_3, maxn[now] + maxn[to] + T.e[i].w);
                minn[now] = min (minn[now], minn[to] + T.e[i].w);
                maxn[now] = max (maxn[now], maxn[to] + T.e[i].w);
            }
            T.list[now] = 0;
        }
        void Build_Tree ()
        {
            int K;
            read (K);
            for (int i = 1; i <= K; ++ i)
            {
                read (key[i]);
                visit[key[i]] = 1;
            }
            std :: sort (key + 1, key + 1 + K, Comp);
            int top = 0, lca;register int now;
            T.Clear ();
            Stack[++ top] = 1;
            for (int i = 1; i <= K; ++ i)
            {
                now = key[i];
                lca = Lca.Get_Lca (now, Stack[top]);
                if (lca == Stack[top])
                {
                    Stack[++ top] = now;
                    continue;
                }
                for (; lca == Lca.Get_Lca (now, Stack[top - 1]); )
                {
                    T.In (Stack[top - 1], Stack[top]);
                    -- top;
                    lca = Lca.Get_Lca (now, Stack[top]);
                }
                T.In (lca, Stack[top]);
                Stack[top] = lca;
                Stack[++ top] = now;
            }
            for (; -- top; T.In (Stack[top], Stack[top + 1]));
            Answer_1 = 0,  Answer_2 = INF, Answer_3 = -INF;
            Dp (1);
            printf ("%lld %d %d\n", Answer_1, Answer_2, Answer_3);
            for (int i = 1; i <= K; ++ i)
                visit[key[i]] = 0;
        }

        void Doing (const int &K)
        {
            for (int i = 1; i <= K; ++ i)
                Build_Tree ();
        }
};

Virtual_Tree Flandre;

int Main ()
{
    fread (buf, 1, BUF, stdin);
    int N, M;
    read (N);

    Lca.Insert_edges (N - 1);
    read (M);
    Flandre.Doing (M);    

    return 0;
}
int ZlycerQan = Main ();
int main (int argc, char *argv[]) {;}
时间: 2024-11-18 18:36:14

LibreOJ #2219. 「HEOI2014」大工程的相关文章

LibreOJ #2012. 「SCOI2016」背单词

二次联通门 : LibreOJ #2012. 「SCOI2016」背单词 /* LibreOJ #2012. 「SCOI2016」背单词 Trie + 贪心 大家都吐槽题目反人类 可我觉得还好,毕竟见的多了 不会做啊.. 正解好巧妙 考虑一下,发现一操作完全不必要,可以省去 因为所有的字符串的后缀关系会形成一个树 那么把字符串倒序插入Trie中 建树,每次向子树小的一个点转移即可 */ #include <cstdio> #include <algorithm> #include

LibreOJ #2006. 「SCOI2015」小凸玩矩阵

二次联通门 : LibreOJ #2006. 「SCOI2015」小凸玩矩阵 /* LibreOJ #2006. 「SCOI2015」小凸玩矩阵 本来以为是道数据结构题 后来想了想发现不可做 就考虑二分dp判断 推方程推不出来 就考虑用网络流判断了 二分出一个数 将小于这个数的位置的点编号 每行的可行点与下一行可行的点连边 后一边最大流判断可选出的数的个数是否符合要求即可 */ #include <cstdio> #include <iostream> #include <q

LibreOJ #2016. 「SCOI2016」美味

二次联通门 : LibreOJ #2016. 「SCOI2016」美味 /* LibreOJ #2016. 「SCOI2016」美味 dalao们都在说这题如果没有加法balabala就可以用可持久化trie解决了 然而我连那个也不会啊QAQ 此题用主席树 从高位到低位贪心 能填1就填1,也就是查询一段区间有没有某个范围的数 (然而由乃dalao说可持久化线段树和可持久化trie是一个东西) */ #include <cstdio> #include <iostream> #inc

LibreOJ #2002. 「SDOI2017」序列计数

二次联通门 : LibreOJ #2002. 「SDOI2017」序列计数 /* LibreOJ #2002. 「SDOI2017」序列计数 线性筛 + 矩阵优化dp 先构造出全部情况的矩阵 用矩阵快速幂计算答案 再构造出全不是质数的矩阵 计算出答案 前一个答案减后一个答案即可 */ #include <cstdio> #include <iostream> #include <cstring> const int BUF = 12312312; char Buf[BU

LibreOJ #2033. 「SDOI2016」生成魔咒

二次联通门 : LibreOJ #2033. 「SDOI2016」生成魔咒 /* LibreOJ #2033. 「SDOI2016」生成魔咒 调了整整一天啊... 绝望啊 最后发现是1打成i了啊!!! */ #include <iostream> #include <cstdio> #include <algorithm> #include <cmath> #include <map> const int BUF = 10000020; char

LibreOJ #2061. 「HAOI2016」放棋子

二次连通门 : LibreOJ #2061. 「HAOI2016」放棋子 /* LibreOJ #2061. 「HAOI2016」放棋子 MDZZ ... 错排 + 高精 */ #include <iostream> #include <cstdio> #include <vector> #include <iomanip> #include <cassert> #include <algorithm> #define int64 l

LibreOJ #2007. 「SCOI2015」国旗计划

二次联通门 : LibreOJ #2007. 「SCOI2015」国旗计划 --by Claris /* LibreOJ #2007. 「SCOI2015」国旗计划 跪膜Claris... */ #include <cstdio> #include <iostream> #include <algorithm> const int BUF = 12312312; char Buf[BUF], *buf = Buf; inline void read (int &

LibreOJ #2009. 「SCOI2015」小凸玩密室

二次联通门 : LibreOJ #2009. 「SCOI2015」小凸玩密室 /* LibreOJ #2009. 「SCOI2015」小凸玩密室 树形dp 做到这么正常的题突然感觉好不适应.... 考虑转移 f[x][y] 表示从x点转移到y点的代价 则我们需要处理出以x为根的子树的代价 讨论处理一下即可(有没有左儿子,有没有右儿子,或是都有) 但是这样转移是O(N^2)的 所以我们考虑优化 显然有很多转移是不需要的 比如y在x的子树中时就没必要转移 那么考虑优化 设g[x][i]表示走完x的子

LibreOJ #2013. 「SCOI2016」幸运数字

二次联通门 : LibreOJ #2013. 「SCOI2016」幸运数字 /* LibreOJ #2013. 「SCOI2016」幸运数字 树链剖分 + 线段树 + 线性基合并 没什么可说的 对原树进行树链剖分 然后建线段树 每个区间维护一段线性基 每次暴力把一段插入另一段中 最后线性基求最大即可 注意线性基求最大时一定是倒着枚举的 */ #include <cstdio> #include <iostream> const int BUF = 12312334; char Bu