(拓扑排序) bzoj 1040

4010: [HNOI2015]菜肴制作

Time Limit: 5 Sec  Memory Limit: 512 MB
Submit: 498  Solved: 275
[Submit][Status][Discuss]

Description

知名美食家小 A被邀请至ATM 大酒店,为其品评菜肴。

ATM 酒店为小 A 准备了 N 道菜肴,酒店按照为菜肴预估的质量从高到低给予

1到N的顺序编号,预估质量最高的菜肴编号为1。由于菜肴之间口味搭配的问题,

某些菜肴必须在另一些菜肴之前制作,具体的,一共有 M 条形如“i 号菜肴‘必须’

先于 j 号菜肴制作”的限制,我们将这样的限制简写为<i,j>。现在,酒店希望能求

出一个最优的菜肴的制作顺序,使得小 A能尽量先吃到质量高的菜肴:也就是说,

(1)在满足所有限制的前提下,1 号菜肴“尽量”优先制作;(2)在满足所有限制,1

号菜肴“尽量”优先制作的前提下,2号菜肴“尽量”优先制作;(3)在满足所有限

制,1号和2号菜肴“尽量”优先的前提下,3号菜肴“尽量”优先制作;(4)在满

足所有限制,1 号和 2 号和 3 号菜肴“尽量”优先的前提下,4 号菜肴“尽量”优

先制作;(5)以此类推。

例1:共4 道菜肴,两条限制<3,1>、<4,1>,那么制作顺序是 3,4,1,2。例2:共

5道菜肴,两条限制<5,2>、 <4,3>,那么制作顺序是 1,5,2,4,3。例1里,首先考虑 1,

因为有限制<3,1>和<4,1>,所以只有制作完 3 和 4 后才能制作 1,而根据(3),3 号

又应“尽量”比 4 号优先,所以当前可确定前三道菜的制作顺序是 3,4,1;接下来

考虑2,确定最终的制作顺序是 3,4,1,2。例 2里,首先制作 1是不违背限制的;接

下来考虑 2 时有<5,2>的限制,所以接下来先制作 5 再制作 2;接下来考虑 3 时有

<4,3>的限制,所以接下来先制作 4再制作 3,从而最终的顺序是 1,5,2,4,3。

现在你需要求出这个最优的菜肴制作顺序。无解输出“Impossible!” (不含引号,

首字母大写,其余字母小写)

Input

第一行是一个正整数D,表示数据组数。

接下来是D组数据。

对于每组数据:

第一行两个用空格分开的正整数N和M,分别表示菜肴数目和制作顺序限

制的条目数。

接下来M行,每行两个正整数x,y,表示“x号菜肴必须先于y号菜肴制作”

的限制。(注意:M条限制中可能存在完全相同的限制)

Output

输出文件仅包含 D 行,每行 N 个整数,表示最优的菜肴制作顺序,或

者”Impossible!”表示无解(不含引号)。

Sample Input

3
5 4
5 4
5 3
4 2
3 2
3 3
1 2
2 3
3 1
5 2
5 2
4 3

Sample Output

1 5 3 4 2
Impossible!
1 5 2 4 3

HINT

【样例解释】

第二组数据同时要求菜肴1先于菜肴2制作,菜肴2先于菜肴3制作,菜肴3先于

菜肴1制作,而这是无论如何也不可能满足的,从而导致无解。

100%的数据满足N,M<=100000,D<=3。

Source

倒着做字典序最大的拓扑排序 然后逆序输出就好了。。。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
using namespace std;
vector<int> e[100005];
int n,m,in[100005],ans[100005];
void topsort()
{
    int tot=0;
    priority_queue<int> q;
    for(int i=1;i<=n;i++)
    {
        if(in[i]==0)
            q.push(i);
    }
    while(!q.empty())
    {
        int x=q.top();
        q.pop();
        ans[++tot]=x;
        for(int i=0;i<e[x].size();i++)
        {
            int v=e[x][i];
            if(--in[v]==0)
                q.push(v);
        }
    }
    if(tot==n)
    {
        for(int i=n;i>=1;i--)
        {
            printf("%d ",ans[i]);
        }
        printf("\n");
    }
    else
        printf("Impossible!\n");
}
int main()
{
    int tt;
    scanf("%d",&tt);
    while(tt--)
    {
        scanf("%d%d",&n,&m);
        for(int i=1;i<=n;i++)
            e[i].clear(),in[i]=0;
        while(m--)
        {
            int x,y;
            scanf("%d%d",&x,&y);
            swap(x,y);
            e[x].push_back(y);
            in[y]++;
        }
        topsort();
    }
    return 0;
}

  

时间: 2024-10-27 07:41:54

(拓扑排序) bzoj 1040的相关文章

XMU 1040 Schedule 【拓扑排序】

1040: Schedule Time Limit: 500 MS  Memory Limit: 64 MBSubmit: 12  Solved: 2[Submit][Status][Web Board] Description Resently, loneknight is doing research on job shop schedule problem(JSP for short). Let us take a look at JSP, there are n jobs and m m

BZOJ 2109 航空管制(拓扑排序+贪心)

绝世好题啊.. 题意:给出一个DAG,和每个点要求出现在这个DAG里面的拓扑排序的位置<=ti,求出所有可能的拓扑排序里面每个点出现的位置的最小值. 正着做不好做,考虑反着做,建立这个图的反图. 对于一个点出现的位置的最小值,就是n-这个点在反图中出现的位置的最大值. 也就是说拓扑排序时尽量把这个点i排在后面就行了.但是还需要满足一个限制,在反图中这个限制就是每个点在拓扑排序的位置>=n-ti. 于是我们每次拓扑排序从队列中取出点的时候,尽量取n-ti值最小的点,这样就能尽量使得当前处理的点i

bzoj 3832: [Poi2014]Rally(线段树+拓扑排序)

3832: [Poi2014]Rally Time Limit: 20 Sec  Memory Limit: 128 MBSec  Special Judge Submit: 113  Solved: 56 [Submit][Status][Discuss] Description An annual bicycle rally will soon begin in Byteburg. The bikers of Byteburg are natural long distance cyclis

BZOJ 1565 NOI2009 植物大战僵尸 最大权闭合图+拓扑排序

题目大意:给定一个m*n的草坪,每块草坪上的植物有两个属性: 1.啃掉这个植物,获得收益x(可正可负) 2.保护(r,c)点的植物不被啃掉 任何一个点的植物存活时,它左侧的所有植物都无法被攻击 求最大收益 首先这个保护和被保护的关系就是最大权闭合图的连边关系 然后直接跑就行 然后我们就会发现没过样例0.0 原因当图出现环时,根据题意,环上的所有点都不能取(想象一个无冷却的食人花前面放一个坚果) 所以这题还要去掉环 由于环上的点不能取,所以所有指向环上的点的点都不能取 这个条件看起来不太好做,我们

BZOJ 1880 Sdoi2009 Elaxia的路线 SPFA+拓扑排序

题目大意:给定一张无向图,求s1到t1与s2到t2的最长公共最短路 以s1 t1 s2 t2为源做4次最短路 如果某条有向边满足s到起始点的距离+边长+终点到t的距离=s到t的最短路 那么这条边就可以在s到t的最短路上 我们把所有既在s1到t1的最短路上也在s2到t2的最短路上的有向边都拎出来 容易证明这个图一定没有环 因此拓扑排序求最长链即可 写完发现过不去样例... 因为这题题目描述与题意不符,两个人从不同方向走同一条边也算满足条件... 于是我们把s2和t2反转之后再做一遍即可... #i

[BZOJ 1565][NOI 2009]植物大战僵尸(Dinic最大流+拓扑排序)

题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1565 orz题目太神...膝盖已经跪烂.... 这题需要我们建立起植物和植物之间复杂的保护关系,以及吃植物得到的损失和回报,因此要用最大流搞,建模太神奇了,跪跪跪... 首先我们建立源点和汇点,对于每个植物,如果吃它可以得到能源,在源点和它之间连一条边,容量为得到的能源数量.如果吃它要消耗能源,则在它和汇点之间建立一条边,边权为消耗的能源个数. 然后对于每个植物,将它和它的保护区

BZOJ 1565 植物大战僵尸(拓扑排序+最大权闭合子图)

图中的保护关系就类似于最大权闭合子图.即你想杀x,你就一定要杀掉保护x的点,那么把x向保护它的点连边.那么题目就转化成了最大权闭合子图的问题. 但是这个图有点特殊啊... 考虑有环的情况,显然这个环以及指向这个环的点都不能选. 所以还要把这个图的反图进行一遍拓扑排序,这样忽略掉了这些点了... # include <cstdio> # include <cstring> # include <cstdlib> # include <iostream> # i

bzoj 4010: [HNOI2015]菜肴制作(优先队列+拓扑排序)

4010: [HNOI2015]菜肴制作 Time Limit: 5 Sec  Memory Limit: 512 MB Submit: 1199  Solved: 583 [Submit][Status][Discuss] Description 知名美食家小 A被邀请至ATM 大酒店,为其品评菜肴. ATM 酒店为小 A 准备了 N 道菜肴,酒店按照为菜肴预估的质量从高到低给予 1到N的顺序编号,预估质量最高的菜肴编号为1.由于菜肴之间口味搭配的问题, 某些菜肴必须在另一些菜肴之前制作,具体

bzoj 1880: [Sdoi2009]Elaxia的路线(拓扑排序+spfa)

1880: [Sdoi2009]Elaxia的路线 Time Limit: 4 Sec  Memory Limit: 64 MB Submit: 974  Solved: 382 [Submit][Status][Discuss] Description 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间.Elaxia和w**每天都要奔波于宿舍和实验室之间,他们 希望在节约时间的前提下,一起走的时间尽可能的长. 现在已知的是