How to regress out unwanted vectors

Source: http://stats.stackexchange.com/questions/117840/how-to-regress-out-some-variables

一楼答案粘贴如下,regress out的一种简单数学方法。

It seems to me that the following is the mathematically simplest way to partial-out variables from a correlated set of items.

Consider a correlation matrix R for 5 items, where we want to "partial-out" the first two variables. This is the initial correlation-matrix:

时间: 2024-10-08 03:27:41

How to regress out unwanted vectors的相关文章

Tutorials on training the Skip-thoughts vectors for features extraction of sentence.

Tutorials on training the Skip-thoughts vectors for features extraction of sentence.  1. Send emails and download the training dataset.  the dataset used in skip_thoughts vectors is from [BookCorpus]: http://yknzhu.wixsite.com/mbweb first, you should

TRANSFORMING IMAGES TO FEATURE VECTORS

TRANSFORMING IMAGES TO FEATURE VECTORS I’m keen to explore some challenges in multimodal learning, such as jointly learning visual and textual semantics. However, I would rather not start by attempting to train an image recognition system from scratc

Vectors(2): 绘制优美的路径动画

欢迎Follow我的GitHub, 关注我的CSDN. 时代在发展, 技术在进步, Android的Vector图像的时代已经到来. 在Google的最新支持库v23.2中, AppCompat类已经使用Vector图像, 使得AAR包减少9%, 大约70KB, 惠及所有高版本的应用. 当然我们也可以使用Vector, 瘦身应用. Vector图像是SVG格式在Android的表现形式. SVG图像适应屏幕, 图片较小, 还有很多优点, 参考. 关于Vectors的分析, 主要分为两节: (1)

A.Kaw矩阵代数初步学习笔记:2. Vectors

“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔记下载(Academia.edu) 第2章课程讲义下载(PDF) Summary Vector A vector is a collection of numbers in a definite order. If it is a collection of $n$ numbers, it is c

PostgresSQL regress test

PostgresSQL regress test 最近看了下pg中的回归测试相关内容,现在将看到的内容记录下来. 1.      先来一个例子 [[email protected] regress]$ make check make -C ../../../src/port all make[1]: Entering directory `/tmp/postgresql-9.3.4/src/port' make -C ../backend submake-errcodes make[2]: En

Global Vectors forWord Representation

参考论文: GloVe: Global Vectors forWord Representation 参考博客:https://blog.csdn.net/coderTC/article/details/73864097 理解GloVe模型: glove 模型类似于word2vec模型,都是一种词的全局向量的表示方法. 模型目标:进行词的向量化表示,使得向量之间尽可能多地蕴含语义和语法的信息. 输入:语料库 输出:词向量 方法概述:首先基于语料库构建词的共现矩阵,然后基于共现矩阵和GloVe模型

STL中的map,list,vectors常见,常用容器

列举三个较为常见,用的也比较多的SRL模板容器 一.vectors,list(顺序结构) 1.vectors相当于数组 2.list 3.vector与list的区别:        vector和数组类似,它拥有一段连续的内存空间,并且起始地址不变,因此     它能非常好的支持随即存取,即 [ ] 操作符,但由于它的内存空间是连续的,所以在中间     进行插入和删除会造成内存块的拷贝,另外,当该数组后的内存空间不够时,需要重新     申请一块足够大的内存并进行内存的拷贝.这些都大大影响了

Dot product of sparse vectors

Suppose we have very large sparse vectors (most of the elements in vector are zeros) Find a data structure to store them Compute the Dot Product. Follow-up:What if one of the vectors is very small? 1 a = [(1,2),(2,3),(100,5)] 2 b = [(0,5),(1,1),(100,

CodeForces 598C Nearest vectors

这题对精度要求很高.用atan2吧... #include<iostream> #include<cstring> #include<cmath> #include<algorithm> #include<cstdio> using namespace std; const int maxn=100000+10; int n; struct X { long double x,y; long double k; int id; }s[maxn];