莫利定理(Morley‘s theorem),也称为莫雷角三分线定理。将三角形的三个内角三等分,靠近某边的两条三分角线相交得到一个交点,则这样的三个交点可以构成一个正三角形。这个三角形常被称作莫利正三角形。
11178 - Morley‘s TheoremTime limit: 3.000 seconds |
参考《算法竞赛入门经典——训练指南》第四章 计算几何
参考代码+部分注释
#include <iostream> #include <cstdio> #include <algorithm> #include <map> #include <vector> #include <queue> #include <cstring> #include <cmath> #include <climits> #define eps 1e-10 using namespace std; typedef long long ll; const int INF=INT_MAX; const int maxn = 110; int dcmp(double x){//三态函数,克服浮点数精度陷阱,判断x==0?x<0?x>0? if(fabs(x)<eps) return 0;else return x<0?-1:1; } struct Point{ double x,y; Point(double x=0,double y=0):x(x),y(y){}//构造函数,方便代码编写 }; typedef Point Vector;//Vector是 Point的别名 Vector operator + (Vector A,Vector B){return Vector(A.x+B.x,A.y+B.y);} Vector operator - (Vector A,Vector B){return Vector(A.x-B.x,A.y-B.y);} Vector operator * (Vector A,double p){return Vector(A.x*p,A.y*p);} Vector operator / (Vector A,double p){return Vector(A.x/p,A.y/p);} bool operator <(const Point& a,const Point& b){return a.x<b.x||(a.x==b.x&&a.y<b.y);} bool operator ==(const Point& a,const Point& b){return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0;} double Dot(Vector A,Vector B){return A.x*B.x+A.y*B.y;} double Length(Vector A){return sqrt(Dot(A,A));} double Angle(Vector A,Vector B){return acos(Dot(A,B)/Length(A)/Length(B));} double Cross(Vector A,Vector B){return A.x*B.y-A.y*B.x;} //rad是弧度不是角度 Vector Rotate(Vector A,double rad){return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad));} //调用前请确保两条直线P+tv,Q+tw有唯一交点。当且仅当Cross(v,w)非0 Point GetLineIntersection(Point P,Vector v,Point Q,Vector w){ Vector u=P-Q; double t=Cross(w,u)/Cross(v,w); return P+v*t; } Point getD(Point A,Point B,Point C){ Vector v1=C-B; double a1=Angle(A-B,v1); v1=Rotate(v1,a1/3);//正数表示逆时针旋转 Vector v2=B-C; double a2=Angle(A-C,v2); v2=Rotate(v2,-a2/3);//负数表示顺时针旋转 return GetLineIntersection(B,v1,C,v2); } int main() { // freopen("input.txt","r",stdin); Point A,B,C,D,E,F; int T;cin>>T; while(T--){ cin>>A.x>>A.y>>B.x>>B.y>>C.x>>C.y; D=getD(A,B,C); E=getD(B,C,A);//注意方向对应 F=getD(C,A,B); printf("%f %f %f %f %f %f\n",D.x,D.y,E.x,E.y,F.x,F.y); } return 0; }
莫利定理:UVa 11178 Morley's Theorey
时间: 2025-01-05 04:39:00