置换群和Burnside引理,Polya定理

定义简化版:

置换,就是一个1~n的排列,是一个1~n排列对1~n的映射

置换群,所有的置换的集合。

经常会遇到求本质不同的构造,如旋转不同构,翻转交换不同构等。

不动点:一个置换中,置换后和置换前没有区别的排列

Burnside引理:本质不同的方案数=每个置换下不动点的个数÷置换总数(一个平均值)

Polya定理:一个置换下不动点的个数=颜色^环个数。(辅助Burnside引理,防止枚举不动点复杂度过高)

这篇文章写得很详细了(具体的在此不说了):

Burnside引理与Polya定理

**特殊模型的环个数:

①旋转同构,N个点,每个点移动k步(0<=k<=n-1),环个数gcd(k,N)

证明:

1.对于k是N的约数,显然成立。一个环用N/k个,可以分成N/(N/k)=k个环。gcd(k,N)=k也成立。

2.当k不是N的约数,最小的环长度是:lcm(N,k),环用的端点是:lcm/k个,可以凑成N/(lcm/k)=N*k/lcm=gcd(N,k)个。

证毕。

②对称同构:

奇数个点对称:1+(n-1)/2个(轴一定过一个顶点)

偶数:按边对称:n/2个

按点对称:2+(n-2)/2个。

(证明显然,画图自行理解)

**

例题:poj2154 Color

题解:

思路:列出式子,转化每个因子作为gcd的贡献。然后处理成欧拉函数即可。

而且,1/n的分母,因为化简的时候消掉了,不用求逆元之类的。(况且p不是质数,要EXLUCAS。。。)

(类似longge的问题(虽然这篇博客没用欧拉函数):[SDOi2012]longge的问题

原文地址:https://www.cnblogs.com/Miracevin/p/9416710.html

时间: 2024-10-02 23:34:00

置换群和Burnside引理,Polya定理的相关文章

Polya 定理入门[Burnside引理,Polya定理,欧拉函数]

$这篇blog重点讨论Polya的应用, 更详细的证明请百度 .$ ___ $Burnside引理$ $$L=\frac{1}{|G|}\sum_{i=1}^{|G|}D(a_i)$$ $L$: 本质不同的方案数. $G$: 置换群集合. $a_i$: 置换群中的第 $i$ 个置换. $D(a_i)$: 进行 $a_i$ 这个置换, 状态不会变化的方案 数量. 该引理与下方内容没有太大关系, 可以暂时忽略. ___ $Problem$ 链接 有 $N$ 个石子围成一圈, 使用 $M$ 种颜色染色

hdu 5868 2016 ACM/ICPC Asia Regional Dalian Online 1001 (burnside引理 polya定理)

Different Circle Permutation Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total Submission(s): 208    Accepted Submission(s): 101 Problem Description You may not know this but it's a fact that Xinghai Square is

Burnside 引理 / P&#243;lya 定理

\(A\) 和 \(B\) 为有限集合 \(X=B^A\) 表示所有 \(A\) 到 \(B\) 的映射 \(G\) 是 \(A\) 上的置换群,\(X/G\) 表示 \(G\) 作用在 \(X\) 上的等价类的集合 \(X^g=\{x|x\in X,g(x)=x\}\) Burnside 引理 \[ |X/G|=\frac{1}{|G|}\sum_{g\in G}|X^g| \] \(c(g)\) 表示置换 \(g\) 能拆分成的不相交的循环置换的数量 Pólya 定理 \[ |X/G|=\f

bzoj1004: [HNOI2008]Cards(burnside引理+DP)

题目大意:3种颜色,每种染si个,有m个置换,求所有本质不同的染色方案数. 置换群的burnside引理,还有个Pólya过几天再看看... burnside引理:有m个置换k种颜色,所有本质不同的染色方案数就是每种置换的不变元素的个数的平均数. 求每种置换的不变元素的个数用背包解决.因为置换之后元素不变,所以对于每个循环节我们要染一个颜色,于是先处理出循环节作为背包中的"物体",然后一个三维背包解决.f[i][j][k]的i j k表示三种颜色分别还可以染多少次. 除m%p用费马小定

Polya定理,Burnside引理(转)

设G是一个集合,*是G上的二元运算,如果(G,*)满足下面的条件: 封闭性:对于任何a,b∈G,有a*b∈G; 结合律:对任何a,b,c∈G有(a*b)*c=a*(b*c); 单位元:存在e∈G,使得对所有的a∈G,都有a*e=e*a=a; 逆元:对于每个元素a∈G,存在x∈G,使得a*x=x*a=e,这个时候记x为a-1,称为a的逆元,那么则称(G,*)为一个群. 例:G={0,1,2,3,4....n-1}那么它在mod n加法下是一个群. 群元素的个数有限,称为有限群,且其中元素的个数称为

Burnside引理与Polya定理

Burnside引理与Polya定理 Burnside引理与Polya定理是有关组合数学的两条十分重要的定理(引理),但是网上的一些资料大多晦涩难懂或者与实际并不相关联,因此在这里做一些浅显的解读,希望通过此文章可以让这两条定理(引理)能够发挥其作用. PS:引理与定理的区别: Ψ引理是数学中为了取得某个更好的定理而作为步骤被证明的命题,其意义并不在于自身被证明,而在于为达成最终定理作出贡献. Ψ一个引理可用于证明多个定理.数学中存在很多著名的引理,这些引理可能对很多问题的解决有帮助.例如欧几里

Polya定理与Burnside引理

Burnside引理 公式 \(L=\frac{1}{|G|}\sum_{i=1}^{|G|}D_{G_i}\) 一些定义 \(E_i\) 表示与\(i\)同类的方案 \(Z_i\) 表示使\(i\)不变的置换 \(G\) 表示所有的置换方法 \(D_i\) 表示第\(i\)种置换能使多少方案不变 \(n\) 表示方案总数 \(L\) 表示本质不同的方案数 引理的引理 \(|E_i|*|Z_i|=|G|\) \(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

[bzoj1004][HNOI2008][Cards] (置换群+Burnside引理+动态规划)

Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绝色.他又询问有多少种方案,Sun想了一下,又给出了正确答案. 最后小春发明了M种不同的洗牌法,这里他又问Sun有多少种不同的染色方案.两种染色方法相同当且仅当其中一种可以通过任意的洗牌法(即可以使用多种洗牌法,而每种方法可以使用多次)洗成另一种.Sun发现这个问题有点难度,决

BZOJ_[HNOI2008]_Cards_(置换+Burnside引理+乘法逆元+费马小定理+快速幂)

描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1004 共n个卡片,染成r,b,g三种颜色,每种颜色的个数有规定.给出一些置换,可以由置换得到的染色方案视为等价的,求等价类计数. 分析 给出置换求等价类计数,用Burnside引理:等价类计数=(每一个置换不动点的和)/置换数.(不知道的建议去看白书) 其中不动点是指一个染色方案经过置换以后染色与之前完全相同. 1.求不动点个数. 不动点的话同一个循环内的每一个点的颜色必须相同(否则不同颜色