Linux I2C驱动--用户态驱动简单示例

1. Linux内核支持I2C通用设备驱动(用户态驱动:由应用层实现对硬件的控制可以称之为用户态驱动),实现文件位于drivers/i2c/i2c-dev.c,设备文件为/dev/i2c-0

2. I2C通用设备驱动以字符设备注册进内核的

static const struct file_operations i2cdev_fops = {
    .owner        = THIS_MODULE,
    .llseek        = no_llseek,
    .read        = i2cdev_read,
    .write        = i2cdev_write,
    .unlocked_ioctl    = i2cdev_ioctl,
    .open        = i2cdev_open,
    .release    = i2cdev_release,
};

res = register_chrdev(I2C_MAJOR, "i2c", &i2cdev_fops);

3. 对设备文件进行读写时,可以调用read、write或者ioctl等方法,他们都是通过调用函数i2c_transfer来实现的

int i2c_transfer(struct i2c_adapter * adap, struct i2c_msg *msgs, int num)
{
    int ret;

    /* REVISIT the fault reporting model here is weak:
     *
     *  - When we get an error after receiving N bytes from a slave,
     *    there is no way to report "N".
     *
     *  - When we get a NAK after transmitting N bytes to a slave,
     *    there is no way to report "N" ... or to let the master
     *    continue executing the rest of this combined message, if
     *    that‘s the appropriate response.
     *
     *  - When for example "num" is two and we successfully complete
     *    the first message but get an error part way through the
     *    second, it‘s unclear whether that should be reported as
     *    one (discarding status on the second message) or errno
     *    (discarding status on the first one).
     */

    if (adap->algo->master_xfer) {
#ifdef DEBUG
        for (ret = 0; ret < num; ret++) {
            dev_dbg(&adap->dev, "master_xfer[%d] %c, addr=0x%02x, "
                "len=%d%s\n", ret, (msgs[ret].flags & I2C_M_RD)
                ? ‘R‘ : ‘W‘, msgs[ret].addr, msgs[ret].len,
                (msgs[ret].flags & I2C_M_RECV_LEN) ? "+" : "");
        }
#endif

        if (in_atomic() || irqs_disabled()) {
            ret = mutex_trylock(&adap->bus_lock);
            if (!ret)
                /* I2C activity is ongoing. */
                return -EAGAIN;
        } else {
            mutex_lock_nested(&adap->bus_lock, adap->level);
        }

        ret = adap->algo->master_xfer(adap,msgs,num);
        mutex_unlock(&adap->bus_lock);

        return ret;
    } else {
        dev_dbg(&adap->dev, "I2C level transfers not supported\n");
        return -EOPNOTSUPP;
    }
}

4. i2c_transfer通过代码可以看出,i2c_transfer 通过调用相应的 adapter 的 master_xfer 方法实现的,而 master_xfer 主要是根据 struct i2c_msg 类型的msgs来进行处理的。

struct i2c_msg {
    __u16 addr;    /* slave address            */
    __u16 flags;
#define I2C_M_TEN        0x0010    /* this is a ten bit chip address */
#define I2C_M_RD        0x0001    /* read data, from slave to master */
#define I2C_M_NOSTART        0x4000    /* if I2C_FUNC_PROTOCOL_MANGLING */
#define I2C_M_REV_DIR_ADDR    0x2000    /* if I2C_FUNC_PROTOCOL_MANGLING */
#define I2C_M_IGNORE_NAK    0x1000    /* if I2C_FUNC_PROTOCOL_MANGLING */
#define I2C_M_NO_RD_ACK        0x0800    /* if I2C_FUNC_PROTOCOL_MANGLING */
#define I2C_M_RECV_LEN        0x0400    /* length will be first received byte */
    __u16 len;        /* msg length                */
    __u8 *buf;        /* pointer to msg data            */
};

5. I2C用户态驱动简单示例

原文地址:https://www.cnblogs.com/wulei0630/p/9607606.html

时间: 2024-07-29 14:42:33

Linux I2C驱动--用户态驱动简单示例的相关文章

Linux 设备驱动之 UIO 用户态驱动优缺点分析

[摘要]linux用户态的设备驱动开发:并不是所有的设备驱动程序都要在内核编写,有些情况下,在用户空间编写驱动程序能够更好地解决遇到的问题.本文对用户态驱动优缺点进行分析. 1.用户空间驱动程序的优点 1.可以和整个C库链接. 2.在驱动中可以使用浮点数,在某些特殊的硬件中,可能需要使用浮点数,而linux内核并不提供浮点数的支持.如果能在用户态实现驱动,就可以轻松解决这一问题. 3.驱动问题不会导致整个系统挂起.内核态驱动的一些错误常常导致整个系统挂起. 4.用户态的驱动调试方便. 5.可以给

聊聊Linux用户态驱动设计

序言 设备驱动可以运行在内核态,也可以运行在用户态,用户态驱动的利弊网上有很多的讨论,而且有些还上升到政治性上,这里不再多做讨论.不管用户态驱动还是内核态驱动,他们都有各自的缺点.内核态驱动的问题是:系统调用开销大:学习曲线陡峭:接口稳定性差:调试困难:bug致命:编程语言选择受限:而用户态驱动面临的挑战是:如何中断处理:如何DMA:如何管理设备的依赖关系:无法使用内核服务等.对此,<User-Space Device Drivers in Linux: A First Look> 一文有较详

[国嵌攻略][155][I2C用户态驱动设计]

用户态驱动模型 用户态驱动模型首先是一个应用程序,其次是在这个用户程序中通过内核调用来驱动设备. IIC通用驱动代码 IIC通用驱动程序的代码在/drivers/i2c/i2c-dev.c中.一次读操作或者一次写操作就是一条消息. EEPROM用户态驱动 IIC通用设备对应/dev/i2c-0设备文件. 1.打开通用设备驱动 2.构造写数据到eeprom的消息 3.使用ioctl写入数据 4.构造从eeprom读数据的消息 5.使用ioctl读出数据 6.关闭设备 配置IIC驱动 make me

Linux内核中添加系统调用接口简单示例

1. Linux体系结构 Linux系统的地址空间分为用户空间和内核空间,通过系统调用和硬件中断能够完成从用户空间到内核空间的转移. 2. 系统调用接口 ① 一般情况下,用户进程不能访问内核空间.Linux内核中提供了一组用于实现各种系统功能的子程序,用户可以调用它们访问Linux内核的数据和函数,这些子程序称为系统调用接口(SCI). ② 系统调用和普通函数的区别:系统调用由操作系统内核实现,运行于内核态:普通函数调用由函数库或用户自己提供,运行于用户态. 3. 系统调用分类:主要分3大类 ①

linux下打印用户态段错误信息的一种方法

引自:韦东山嵌入式视频第二期 “第31课第3节_应用调试之配置修改内核打印用户态段错误信息_P” 第6分钟起. 1.配置内核支持DEBUG_USER  (勾选 Kernel hacking -> Verbose user fault messages[*] 即可)(视频第8:23) 2.设置bootargs,添加参数 user_debug = 0xFF 即可. user_debug的每一位代表设置不同的模式,具体模式可参考文件:include/asm-arm/System.h下的UDBG_XXX

Linux负载均衡软件LVS的简单示例

本文一个简单的示例演示LVS的配置(DR模式)和测试.使用的配置环境如下:Director server: 192.168.8.4Real server1: 192.18.8.5Real server2: 192.168.8.6VIP: 192.168.8.200网络topology图如下:图2中的VIP指的是虚拟IP地址,还可以叫做LVS集群的服务IP,在DR.TUN模式中,数据包是直接返回给用户的,所以,在Director Server上以及集群的每个节点上都需要设置这个地址.此IP在Rea

(55)Linux驱动开发之一驱动概述

驱动概述 驱动用在哪里?非标准类设备的编写和标准类设备的驱动移植. 驱动实际上是随着linux内核相伴而生的.某段代码能够控制我们的硬件去工作,去动,这段代码就称为我们的驱动代码. 技术只是一种手段,一种技巧,我们应该利用技术去搞出产品. 5.1.1_2.什么是驱动1_2 5.1.1.1.理解驱动的概念 (1)驱动一词的字面意思 (2)物理上的驱动 (3)硬件中的驱动 (4)linux内核驱动.软件层面的驱动广义上就是指:这一段代码操作了硬件去动,所以这一段代码就叫硬件的驱动程序.(本质上是电力

Linux用户态程序计时方式详解

前言 良好的计时器可帮助程序开发人员确定程序的性能瓶颈,或对不同算法进行性能比较.但要精确测量程序的运行时间并不容易,因为进程切换.中断.共享的多用户.网络流量.高速缓存访问及转移预测等因素都会对程序计时产生影响. 本文将不考虑这些影响因素(相关资料可参考<深入理解计算机系统>一书),而仅仅关注Linux系统中用户态程序执行时间的计算方式.除本文所述计时方式外,还可借助外部工具统计耗时,如<Linux调试分析诊断利器——strace>一文中介绍的strace. 本文示例代码的运行环

Linux用户态程序计时方式详解[转]

转自: http://www.cnblogs.com/clover-toeic/p/3845210.html 前言 良好的计时器可帮助程序开发人员确定程序的性能瓶颈,或对不同算法进行性能比较.但要精确测量程序的运行时间并不容易,因为进程切换.中断.共享的多用户.网络流量.高速缓存访问及转移预测等因素都会对程序计时产生影响. 本文将不考虑这些影响因素(相关资料可参考<深入理解计算机系统>一书),而仅仅关注Linux系统中用户态程序执行时间的计算方式.除本文所述计时方式外,还可借助外部工具统计耗时