hive 优化 (转)

Hive优化

  • Hive优化目标

    • 在有限的资源下,执行效率更高
  • 常见问题
    • 数据倾斜
    • map数设置
    • reduce数设置
    • 其他
  • Hive执行

    • HQL --> Job --> Map/Reduce
    • 执行计划
      • explain [extended] hql
      • 样例
      • select col,count(1) from test2 group by col;
      • explain select col,count(1) from test2 group by col;
  • Hive表优化
    • 分区

      • 静态分区
      • 动态分区
        • set hive.exec.dynamic.partition=true;
        • set hive.exec.dynamic.partition.mode=nonstrict;
    • 分桶
      • set hive.enforce.bucketing=true;
      • set hive.enforce.sorting=true;
    • 数据
      • 相同数据尽量聚集在一起
  • hive job优化

    • 并行化执行

      • 每个查询被hive转化成多个阶段,有些阶段关联性不大,则可以并行化执行,减少执行时间
      • set hive.exec.parallel= true;
      • set hive.exec.parallel.thread.numbe=8;
    • 本地化执行
      • set hive.exec.mode.local.auto=true;
      • 当一个job满足如下条件才能真正使用本地模式:
        • job的输入数据大小必须小于参数:hive.exec.mode.local.auto.inputbytes.max(默认128MB)
        • job的map数必须小于参数:hive.exec.mode.local.auto.tasks.max(默认4)
        • job的reduce数必须为0或者1
    • job合并输入小文件
      • set hive.input.format = org.apache.hadoop.hive.ql.io.CombineHiveInputFormat
      • 合并文件数由mapred.max.split.size限制的大小决定
    • job合并输出小文件
      • set hive.merge.smallfiles.avgsize=256000000;当输出文件平均小于该值,启动新job合并文件
      • set hive.merge.size.per.task=64000000;合并之后的文件大小
    • JVM重利用
      • set mapred.job.reuse.jvm.num.tasks=20;
      • JVM重利用可以使得JOB长时间保留slot,直到作业结束,这在对于有较多任务和较多小文件的任务是非常有意义的,减少执行时间。当然这个值不能设置过大,因为有些作业会有reduce任务,如果reduce任务没有完成,则map任务占用的slot不能释放,其他的作业可能就需要等待。
    • 压缩数据
      • 中间压缩就是处理hive查询的多个job之间的数据,对于中间压缩,最好选择一个节省cpu耗时的压缩方式

        • set hive.exec.compress.intermediate=true;
        • set hive.intermediate.compression.codec=org.apache.hadoop.io.compress.SnappyCodec;
        • set hive.intermediate.compression.type=BLOCK;
        • hive查询最终的输出也可以压缩
          • set hive.exec.compress.output=true;
          • set mapred.output.compreession.codec=org.apache.hadoop.io.compress.GzipCodec;
          • set mapred.output.compression.type=BLOCK;
  • Hive Map优化

    • set mapred.map.tasks =10; 无效
    • (1)默认map个数
      • default_num=total_size/block_size;
    • (2)期望大小
      • goal_num=mapred.map.tasks;
    • (3)设置处理的文件大小
      • split_size=max(mapred.min.split.size,block_size);
      • split_num=total_size/split_size;
    • (4)计算的map个数
      • compute_map_num=min(split_num,max(default_num,goal_num))
    • 经过以上的分析,在设置map个数的时候,可以简答的总结为以下几点:
      • 如果想增加map个数,则设置mapred.map.tasks为一个较大的值
      • 如果想减小map个数,则设置mapred.min.split.size为一个较大的值
      • 情况1:输入文件size巨大,但不是小文件
        • 增大mapred.min.split.size的值
        • 情况2:输入文件数量巨大,且都是小文件,就是单个文件的size小于blockSize。这种情况通过增大mapred.min.split.size不可行,需要使用combineFileInputFormat将多个input path合并成一个InputSplit送给mapper处理,从而减少mapper的数量。
    • map端聚合
      • set hive.map.aggr=true;
    • 推测执行

mapred.map.tasks.apeculative.execution

  • Hive Shuffle优化

    • Map端

      • io.sort.mb
      • io.sort.spill.percent
      • min.num.spill.for.combine
      • io.sort.factor
      • io.sort.record.percent
    • Reduce端
      • mapred.reduce.parallel.copies
      • mapred.reduce.copy.backoff
      • io.sort.factor
      • mapred.job.shuffle.input.buffer.percent
      • mapred.job.shuffle.input.buffer.percent
      • mapred.job.shuffle.input.buffer.percent
  • Hive Reduce优化

    • 需要reduce操作的查询

      • 聚合函数

        • sum,count,distinct...
        • 高级查询
          • group by,join,distribute by,cluster by...
          • order by比较特殊,只需要一个reduce
    • 推测执行
      • mapred.reduce.tasks.speculative.execution
      • hive.mapred.reduce.tasks.speculative.execution
    • Reduce优化
      • set mapred.reduce.tasks=10;直接设置

        • hive.exec.reducers.max 默认 :999
        • hive.exec.reducers.bytes.per.reducer 默认:1G
        • 计算公式
          • numRTasks = min[maxReducers,input.size/perReducer]
          • maxReducers=hive.exec.reducers.max
          • perReducer = hive.exec.reducers.bytes.per.reducer
  • hive查询操作优化

    • join优化

      • hive.optimize.skewjoin=true;如果是Join过程出现倾斜,应该设置为true
      • set hive.skewjoin.key=100000; 这个是join的键对应的记录条数超过这个值则会进行优化
      • mapjoin
        • set hive.auto.current.join=true;
        • hive.mapjoin.smalltable.filesize默认值是25mb
        • select /*+mapjoin(A)*/ f.a,f.b from A t join B f on (f.a=t.a)
        • 简单总结下,mapjoin的使用场景:
          • 关联操作中有一张表非常小
          • 不等值的链接操作
    • Bucket join
      • 两个表以相同方式划分桶
      • 两个表的桶个数是倍数关系
      • crete table order(cid int,price float) clustered by(cid) into 32 buckets;
      • crete table customer(id int,first string) clustered by(id) into 32 buckets;
      • select price from order t join customer s on t.cid=s.id
    • join 优化前
      • select m.cid,u.id from order m join customer u on m.cid=u.id where m.dt=‘2013-12-12‘;
    • join优化后
      • select m.cid,u.id from (select cid from order where dt=‘2013-12-12‘)m join customer u on m.cid=u.id;
    • group by 优化
      • hive.groupby.skewindata=true;如果是group by 过程出现倾斜 应该设置为true
      • set hive.groupby.mapaggr.checkinterval=100000;--这个是group的键对应的记录条数超过这个值则会进行优化
    • count distinct 优化
      • 优化前

        • select count(distinct id) from tablename
        • 优化后
          • select count(1) from (select distinct id from tablename) tmp;
          • select count(1) from (select id from tablename group by id) tmp;
          • 优化前
            • select a,sum(b),count(distinct c),count(distinct d) from test group by a
            • 优化后
              • select a,sum(b) as b,count(c) as c,count(d) as d from(select a,0 as b,c,null as d from test group by a,c union all select a,0 as b,null as c,d from test group by a,d union all select a,b,null as c,null as d from test)tmp1 group by a;

原文地址:https://www.cnblogs.com/luren-hometown/p/9480464.html

时间: 2024-10-29 18:44:44

hive 优化 (转)的相关文章

Hive优化总结

优化时,把hive sql当做map reduce程序来读,会有意想不到的惊喜. 理解hadoop的核心能力,是hive优化的根本.这是这一年来,项目组所有成员宝贵的经验总结. 长期观察hadoop处理数据的过程,有几个显著的特征: 1.不怕数据多,就怕数据倾斜. 2.对jobs数比较多的作业运行效率相对比较低,比如即使有几百行的表,如果多次关联多次汇总,产生十几个jobs,没半小时是跑不完的.map reduce作业初始化的时间是比较长的. 3.对sum,count来说,不存在数据倾斜问题.

Hive 12、Hive优化

要点:优化时,把hive sql当做map reduce程序来读,会有意想不到的惊喜. 理解hadoop的核心能力,是hive优化的根本. 长期观察hadoop处理数据的过程,有几个显著的特征: 1.不怕数据多,就怕数据倾斜. 2.对jobs数比较多的作业运行效率相对比较低,比如即使有几百行的表,如果多次关联多次汇总,产生十几个jobs,没半小时是跑不完的.map reduce作业初始化的时间是比较长的. 3.对sum,count来说,不存在数据倾斜问题. 4.对count(distinct )

Hive优化策略介绍

作为企业Hadoop应用的核心产品之一,Hive承载着公司95%以上的离线统计,甚至很多企业里的离线统计全由Hive完成: Hive在企业云计算平台发挥的作用和影响越来越大,如何优化提速已经显得至关重要: Hive作业的规模决定着优化层级,一个Hive作业的优化和一万个Hive作业的优化截然不同: 后续文章将从如下三个方面进行hive的优化介绍: 1)  架构方面(高效.全局.局部)----最有效的优化,好的架构能让作业性能提高很多 a)  分表:(日志表量大而且作业访问次数多,造成耗时较长:将

HIVE优化提示-如何写好HQL

一.     Hive join优化 1.     尽量将小表放在join的左边,我们这边使用的hive-0.12.0,所以是自动转化的,既把小表自动装入内存,执行map side join(性能好), 这是由参数hive.auto.convert.join=true 和hive.smalltable.filesize=25000000L)参数控制(默认是25M),如果表文件大小在25M左右,可以适当调整此参数,进行map side join,避免reduce side join. 也可以显示声

hive优化之——控制hive任务中的map数和reduce数

一.    控制hive任务中的map数: 1.    通常情况下,作业会通过input的目录产生一个或者多个map任务.主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改): 2.    举例:a)    假设input目录下有1个文件a,大小为780M,那么hadoop会将该文件a分隔成7个块(6个128m的块和1个12m的块),从而产生7个map数

大数据开发实战:Hive优化实战3-大表join大表优化

5.大表join大表优化 如果Hive优化实战2中mapjoin中小表dim_seller很大呢?比如超过了1GB大小?这种就是大表join大表的问题.首先引入一个具体的问题场景,然后基于此介绍各自优化方案. 5.1.问题场景 问题场景如下: A表为一个汇总表,汇总的是卖家买家最近N天交易汇总信息,即对于每个卖家最近N天,其每个买家共成交了多少单,总金额是多少,假设N取90天,汇总值仅取成交单数.A表的字段有:buyer_id. seller_id.pay_cnt_90day. B表为卖家基本信

大数据技术之_08_Hive学习_04_压缩和存储(Hive高级)+ 企业级调优(Hive优化)

第8章 压缩和存储(Hive高级)8.1 Hadoop源码编译支持Snappy压缩8.1.1 资源准备8.1.2 jar包安装8.1.3 编译源码8.2 Hadoop压缩配置8.2.1 MR支持的压缩编码8.2.2 压缩参数配置8.3 开启Map输出阶段压缩8.4 开启Reduce输出阶段压缩8.5 文件存储格式8.5.1 列式存储和行式存储8.5.2 TextFile格式8.5.3 Orc格式8.5.4 Parquet格式8.5.5 主流文件存储格式对比实验8.6 存储和压缩结合8.6.1 修

Hive优化

概述: 一个Hive查询生成多个map reduec job,一个map reduce job又有map,reduce,spill,Shuffle,sort等几个阶段,所以针对Hive查询的优化可以大致分为针对MR中单个步骤的优化(其中又会分细节),针对MR全局的优化,和针对整个查询(多MR job)的优化,下文会分别阐述. 在开始之前先把MR的流程图贴出来(摘自Hadoop权威指南),方便后面对照.另外要说明的是,这个优化知识针对Hive0.9版本,而不是后来Hortonwork发起Sting

收集hive优化解决方案

hive的优化问题1.启动一次JOB尽可能多做事,尽量减少job的数量.能重用就重用,要设计好的模型.2.合理设置reduce个数,reduce个数过多,会造成大量小文件问题.3.使用hive.exec.parallel参数控制在同一个sql中的不同的job是否可以同时运行,提高作业的并发4.注意join的使用,表小用map join,否则用普通reduce join,hive会将前面的表数据装入内存,因此可将数据少的表放在数据多的表之前,减少内存资源消耗.5.注意小文件的问题    在hive