线程池ThreadPoolExecutor工作原理

前言

工作原理

如果使用过线程池,细心的同学肯定会注意到,new一个线程池,但是如果不往里面提交任何任务的话,main方法执行完之后程序会退出,但是如果向线程池中提交了任务的话,main方法执行完毕之后程序是不会自动退出的,是什么原理,或者说是什么原因导致任务提交到线程池之后任务执行完程序无法自动退出的呢?下面就让我们趴开线程池的源码,一探究竟。

我们直接从ThreadPoolExecutor的execute方法开始说起。线程提交到ThreadPoolExecutor执行分为三种情况,具体如下:

public void execute(Runnable command) {

if (command == null)

throw new NullPointerException();

    int c = ctl.get();
    //1、当前线程池中的线程数小于corePoolSize
    if (workerCountOf(c) < corePoolSize) {
        if (addWorker(command, true))
            return;
        c = ctl.get();
    }
    //2、当前线程池中的线程数大于corePoolSize,直接将任务放入工作队列
    if (isRunning(c) && workQueue.offer(command)) {
        int recheck = ctl.get();
        if (! isRunning(recheck) && remove(command))
            reject(command);
        else if (workerCountOf(recheck) == 0)
            addWorker(null, false);
    }
    //3、如果入队失败,尝试启动新的线程,即此时工作队列已满,线程池中的线程数大于corePoolSize小于maxPoolSize
    else if (!addWorker(command, false))
        reject(command);//启动新的线程失败,执行拒绝策略
}

现在我们知道,将一个任务提交到ThreadPoolExecutor线程池执行分为三种情况,可以看到,三种情况下都有一个addWorker的动作,下面我们主要看看addWorker里面做了什么

private boolean addWorker(Runnable firstTask, boolean core) {
    // 第一步,cas操作保证正确的增加任务数
    retry:
    for (;;) {
        int c = ctl.get();
        int rs = runStateOf(c);

        // 如果当前线程池不处于RUNNING状态,则不能添加任务
        if (rs >= SHUTDOWN && // 如果线程池状态rs >= SHUTDOWN,也就是非RUNNING状态,此时不接受新任务
            ! (rs == SHUTDOWN && //rs == SHUTDOWN ,此状态不接受新任务
               firstTask == null &&
               ! workQueue.isEmpty())) // 工作队列不为空
            return false;

        for (;;) {
            // 获取任务数量
            int wc = workerCountOf(c);
            //如果线程数 大于等于CAPACITY 添加任务失败
            if (wc >= CAPACITY ||
                wc >= (core ? corePoolSize : maximumPoolSize))
                return false;
            if (compareAndIncrementWorkerCount(c))//尝试增加任务数量
                break retry;
            c = ctl.get();  // Re-read ctl
            // 如果当前的运行状态不等于rs,说明状态已被改变,返回第一个for循环继续执行
            if (runStateOf(c) != rs)
                continue retry;
            // else CAS failed due to workerCount change; retry inner loop
        }
    }
    // 第二步 创建一个Worker,包装当前的任务,并启动该work中创建的线程,用于执行当前当前提交过来的任务
    boolean workerStarted = false;
    boolean workerAdded = false;
    Worker w = null;
    try {
        w = new Worker(firstTask);//新建一个worker,同时从ThreadFactory中创建一个新的线程
        final Thread t = w.thread;//
        if (t != null) {
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                // Recheck while holding lock.
                // Back out on ThreadFactory failure or if
                // shut down before lock acquired.
                int rs = runStateOf(ctl.get());

                if (rs < SHUTDOWN ||
                    (rs == SHUTDOWN && firstTask == null)) {
                    if (t.isAlive()) // precheck that t is startable
                        throw new IllegalThreadStateException();
                    workers.add(w);//放入worker集合
                    int s = workers.size();
                    if (s > largestPoolSize)
                        largestPoolSize = s;
                    workerAdded = true;
                }
            } finally {
                mainLock.unlock();
            }
            if (workerAdded) {//worker添加成功,启动任务
                t.start();
                workerStarted = true;
            }
        }
    } finally {
        if (! workerStarted)
            addWorkerFailed(w);
    }
    return workerStarted;
}

这里分为两步,首先使用cas操作保证成功增加workerCount,然后将创建一个worker,将worker添加人worker池,启动worker,返回任务添加成功

Worker是ThreadPoolExecutor线程池的内部类,主要作为用户提交任务的包装,它继承自AbstractQueuedSynchronizer类并实现了Runnable接口,它的run方法很简单,直接调用runWorker方法,runWorker如下:

final void runWorker(Worker w) {
    Thread wt = Thread.currentThread();
    Runnable task = w.firstTask;
    w.firstTask = null;
    w.unlock(); // allow interrupts
    boolean completedAbruptly = true;
    try {
        while (task != null || (task = getTask()) != null) {
            w.lock();
            // If pool is stopping, ensure thread is interrupted;
            // if not, ensure thread is not interrupted.  This
            // requires a recheck in second case to deal with
            // shutdownNow race while clearing interrupt
            if ((runStateAtLeast(ctl.get(), STOP) ||
                 (Thread.interrupted() &&
                  runStateAtLeast(ctl.get(), STOP))) &&
                !wt.isInterrupted())
                wt.interrupt();
            try {
                beforeExecute(wt, task);
                Throwable thrown = null;
                try {
                    task.run();
                } catch (RuntimeException x) {
                    thrown = x; throw x;
                } catch (Error x) {
                    thrown = x; throw x;
                } catch (Throwable x) {
                    thrown = x; throw new Error(x);
                } finally {
                    afterExecute(task, thrown);
                }
            } finally {
                task = null;
                w.completedTasks++;
                w.unlock();
            }
        }
        completedAbruptly = false;
    } finally {
        processWorkerExit(w, completedAbruptly);
    }
}

可以看到,在runWorker中使用了一个while循环,使用getTask去获取任务, getTask如下:

private Runnable getTask() {
    boolean timedOut = false; // Did the last poll() time out?

    for (;;) {
        int c = ctl.get();
        int rs = runStateOf(c);

        // Check if queue empty only if necessary.
        if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
            decrementWorkerCount();
            return null;
        }

        int wc = workerCountOf(c);

        // Are workers subject to culling?
        boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;

        if ((wc > maximumPoolSize || (timed && timedOut))
            && (wc > 1 || workQueue.isEmpty())) {
            if (compareAndDecrementWorkerCount(c))
                return null;
            continue;
        }

        try {
            Runnable r = timed ?
                workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                workQueue.take();
            if (r != null)
                return r;
            timedOut = true;
        } catch (InterruptedException retry) {
            timedOut = false;
        }
    }
}

getTask通过workQueue.take();方法获取任务,我们知道,blockingQueue的take方法是阻塞的,当队列为空时,会一直阻塞知道获取新的任务,到这里,我们便可以回答上面提到的问题了

重新梳理一遍,用户向ThreadPoolExecutor线程池中添加任务时,ThreadPoolExecutor会创建一个Worker,用来包装并执行用户任务,Worker的run方法中采用while循环,通过getTask方法不断的取出工作队列中的任务执行,当任务队列为空时,take方法阻塞了线程,导致任务执行线程一直不会退出,所以用户想ThreadPoolExecutor线程池中提交任务之后程序不会自动结束,就是这个原理。

原文地址:https://www.cnblogs.com/canmeng-cn/p/9332746.html

时间: 2024-07-31 09:23:38

线程池ThreadPoolExecutor工作原理的相关文章

21.线程池ThreadPoolExecutor实现原理

1. 为什么要使用线程池 在实际使用中,线程是很占用系统资源的,如果对线程管理不善很容易导致系统问题.因此,在大多数并发框架中都会使用线程池来管理线程,使用线程池管理线程主要有如下好处: 降低资源消耗.通过复用已存在的线程和降低线程关闭的次数来尽可能降低系统性能损耗: 提升系统响应速度.通过复用线程,省去创建线程的过程,因此整体上提升了系统的响应速度: 提高线程的可管理性.线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,因此,需要使用线程池来管理线程. 2. 线程池的

线程池的工作原理及使用示例

欢迎探讨,如有错误敬请指正 如需转载,请注明出处  http://www.cnblogs.com/nullzx/ 1. 为什么要使用线程池? 我们现在考虑最简单的服务器工作模型:服务器每当接收到一个客户端请求时就创建一个线程为其服务.这种模式理论上可以工作的很好,但实际上会存在一些缺陷,服务器应用程序中经常出现的情况是单个客户端请求处理的任务很简单但客户端的数目却是巨大的,因此服务器在创建和销毁线程所花费的时间和系统资源可能比处理客户端请求处理的任务花费的时间和资源更多. 线程池技术就是为了解决

多线程之:模拟实现线程池的工作原理

[一]线程池存在的价值: ==>多线程技术主要解决处理器单元内多个线程执行的问题,它可以显著减少处理器单元的闲置时间,增加处理器单元的吞吐能力.    ==>假设一个服务器完成一项任务所需时间为:T1 创建线程时间,T2 在线程中执行任务的时间,T3 销毁线程时间. ==>如果:T1 + T3 远大于 T2,则可以采用线程池,以提高服务器性能. [二]合理利用线程池能够带来三个好处. * 第一:降低资源消耗.通过重复利用已创建的线程降低线程创建和销毁造成的消耗. * 第二:提高响应速度.

线程池的工作原理与源码解读

随着cpu核数越来越多,不可避免的利用多线程技术以充分利用其计算能力.所以,多线程技术是服务端开发人员必须掌握的技术. 线程的创建和销毁,都涉及到系统调用,比较消耗系统资源,所以就引入了线程池技术,避免频繁的线程创建和销毁. 在Java用有一个Executors工具类,可以为我们创建一个线程池,其本质就是new了一个ThreadPoolExecutor对象.线程池几乎也是面试必考问题.本节结合源代码,说说ThreadExecutor的工作原理 一.线程池创建 先看一下ThreadPoolExec

Java中的线程池——ThreadPoolExecutor的原理

1 线程池的处理流程向线程池提交一个任务后,它的主要处理流程如下图所示一个线程从被提交(submit)到执行共经历以下流程: 线程池判断核心线程池里是的线程是否都在执行任务,如果不是,则创建一个新的工作线程来执行任务.如果核心线程池里的线程都在执行任务,则进入下一个流程线程池判断工作队列是否已满.如果工作队列没有满,则将新提交的任务储存在这个工作队列里.如果工作队列满了,则进入下一个流程.线程池判断其内部线程是否都处于工作状态.如果没有,则创建一个新的工作线程来执行任务.如果已满了,则交给饱和策

线程池的工作原理阅读总结

线程池使用了一种池化技术,和很多其他池化技术一样,都是为了更高效的利用资源,例如链接池,内存池等等 线程池一共有五种状态,运行状态,待关闭状态,停止状态,整理状态,终止状态,一个线程池的核心参数有很多,每个参数都有着特殊的作用,各个参数聚合在一起 后将完成整个线程池的完整工作,每一个工作线程中都维持着一个Thread,线程池的重点之一就是控制线程资源合理高效的使用,所以必须控制工作线程的个数,所以要保存当前线程中的工作线程个数. 线程池设计了两个变量来协作,分别是核心线程数和最大线程数,核心线程

Java线程池ThreadPoolExecutor

线程池的好处 1. 降低资源的消耗 通过重复利用已创建的线程降低线程创建和销毁所造成的消耗 2. 提高响应速度 当任务到达时,任务可以不需要等到线程创建就能立即执行 3. 提高线程的可管理型 线程是稀缺资源,如果无限制地创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一分配.调优和监控. 实现原理 当提交一个新任务到线程池时,线程池的处理流程为: 1). 线程池判断核心线程池里的线程是否都在执行任务. 如果不是,则创建一个新的工作线程来执行任务.如果核心线程池里的线程都在执行

《Java源码分析》:线程池 ThreadPoolExecutor

<Java源码分析>:线程池 ThreadPoolExecutor ThreadPoolExecutor是ExecutorService的一张实现,但是是间接实现. ThreadPoolExecutor是继承AbstractExecutorService.而AbstractExecutorService实现了ExecutorService接口. 在介绍细节的之前,先介绍下ThreadPoolExecutor的结构 1.线程池需要支持多个线程并发执行,因此有一个线程集合Collection来执行

线程池ThreadPoolExecutor分析

线程池.线程池是什么,说究竟,线程池是处理多线程的一种形式,管理线程的创建,任务的运行,避免了无限创建新的线程带来的资源消耗,可以提高应用的性能.非常多相关操作都是离不开的线程池的,比方android应用中网络请求的封装.这篇博客要解决的问题是: 1.线程池的工作原理及过程. 要分析线程池的工作原理及过程,还是要从它的源代码实现入手,首先是线程是构造方法,何谓构造方法.构造方法就是对成员变量进行初始化,在这里,我们能够看到它的构造方法: /** * Creates a new {@code Th