#使用dropout解决overfitting(过拟合)问题 #如果有dropout,在feed_dict的参数中一定要加入dropout的值 import tensorflow as tf from sklearn.datasets import load_digits from sklearn.cross_validation import train_test_split from sklearn.preprocessing import LabelBinarizer #load datas 导入klearn中digits手写字体数据集 digits = load_digits() X = digits.data #加载从0-9的数字集 y = digits.target #y为X所对应的标签 #fit(y) 返回一个实例 #fit_transform(y) 返回 和y一样的形状 y = LabelBinarizer().fit_transform(y) #train_test_split(train_data,train_target,test_size=0.4, random_state=0) # 是交叉验证中常用的函数,功能是从样本中随机的按比例选取train_data和test_data #参数解释: #train_data:所要划分的样本特征集 #train_target:所要划分的样本结果 #test_size:样本占比,如果是整数的话就是样本的数量 #random_state:是随机数的种子。 #随机数种子:其实就是该组随机数的编号,在需要重复试验的时候,保证得到一组一样的随机数。 # 比如你每次都填1,其他参数一样的情况下你得到的随机数组是一样的。但填0或不填,每次都会不一样。 #随机数的产生取决于种子,随机数和种子之间的关系遵从以下两个规则: #种子不同,产生不同的随机数;种子相同,即使实例不同也产生相同的随机数。 X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3) ‘‘‘ #fit_transform()、inverse_transform使用的例子 #程序 from sklearn import preprocessing feature = [[0,1], [1,1], [0,0], [1,0]] label= [‘yes‘, ‘no‘, ‘yes‘, ‘no‘] lb = preprocessing.LabelBinarizer() #构建一个转换对象 Y = lb.fit_transform(label) re_label = lb.inverse_transform(Y)#还原之前的label print(Y) print(re_label) #结果 [[1] [0] [1] [0]] [‘yes‘ ‘no‘ ‘yes‘ ‘no‘] ‘‘‘ # 定义一个神经层 def add_layer(inputs, in_size, out_size,layer_name, activation_function=None): #add one more layer and return the output of the layer Weights = tf.Variable(tf.random_normal([in_size, out_size])) biases = tf.Variable(tf.zeros([1, out_size]) + 0.1) Wx_plus_b = tf.matmul(inputs, Weights) + biases Wx_plus_b = tf.nn.dropout(Wx_plus_b, keep_pro)#使用dropout机制,解决overfitting问题 if activation_function is None: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b) tf.summary.histogram(layer_name+‘/output‘,outputs) return outputs #define placeholder for inputs to network keep_pro = tf.placeholder(tf.float32)#dropout机制使用 xs = tf.placeholder(tf.float32, [None, 64]) # none表示无论给多少个例子都行,64=8*8 ys = tf.placeholder(tf.float32, [None, 10]) #表示10个需要识别的数字 #add output layer l1 = add_layer(xs, 64, 50,‘l1‘,activation_function=tf.nn.tanh) prediction = add_layer(l1, 50, 10,‘l2‘, activation_function=tf.nn.softmax) #the error between prediction and real data cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),reduction_indices=[1])) #loss function tf.summary.scalar(‘loss‘,cross_entropy) train_step = tf.train.GradientDescentOptimizer(0.6).minimize(cross_entropy) sess = tf.Session() merged = tf.summary.merge_all() sess.run(tf.initialize_all_variables())#tf.initialize_all_variables()以被弃用 #sess.run(tf.global_variables_initializer()) #summary writer goes in here train_writer = tf.summary.FileWriter("../../logs/train",sess.graph) test_writer = tf.summary.FileWriter("../../logs/test",sess.graph) for i in range(500): sess.run(train_step,feed_dict={xs: X_train, ys: y_train,keep_pro:0.6})#保持0.6的概率不被drop掉 if i%50 == 0: # record loss train_result = sess.run(merged, feed_dict={xs: X_train, ys: y_train,keep_pro:1}) test_result = sess.run(merged, feed_dict={xs: X_test, ys: y_test,keep_pro:1}) train_writer.add_summary(train_result, i) test_writer.add_summary(test_result, i)
原文地址:https://www.cnblogs.com/Harriett-Lin/p/9591448.html
时间: 2024-10-09 13:17:37