【机器学习基础】Logistic回归基础

soft binary classification

Logistics回归模型要解决的是分类问题,在之前的二元分类问题中,我们将数据分成正例和负例,但是像PLA算法一样,用单位阶跃函数来处理的这种瞬间跳跃的过程有时很难处理。于是,我们希望能得到正例的概率值是多少。

logistic regression的假设

我们在PLA和线性回归算法中都用数据的加权来计算一个分数s,在logistic回归中,我们用sigmoid函数来将这个分数s转化成0到1的概率值。

所以,用下面的h(x)来表示一个假设,而这个logistic函数θ(x)就是θ(x)=1/[1+exp(-x)](该函数平滑且处处可微)。

logistic regression的训练误差函数

我们设想目标函数f(x) = P(+1|x),这里数据的正例和负例的概率分布其实是一个伯努利分布。那么,如果我们的假设h(x)要逼近f(x)函数,那么对于训练数据D,由h构成的似然度应该近似等于从这个伯努利分布中抽取数据的概率。

那么我们要求的最终假设g就是使得这个似然度最大的h。

接下来,我们来衡量这个可能性(likelihood),这里将数据的先验概率P(xi)化成灰色,因为它对于所有的数据来说都是一样的,所以相当于是一个常数,整理一下,我们可以看到这个可能性正比于所有的h乘起来的结果(其中h(ynxn)包含了h(xi)和h(-xi)的情形)。

cross entropy error

下面的图片告诉了我们,如何将这个可能性的式子进行化简,使得我们在后面的计算变得容易。我们用θ(·)函数代替了h,将式子取对数使得乘积的形式变成求和的形式,最后再添一个负号,将最大似然函数的形式变成了求解最小值的最优化问题。

这里,我们定义了交叉熵误差来衡量我们的训练误差。

最小化误差函数

我们得到了训练误差的具体形式,由于这个训练误差函数是可微并且是凸函数,所以依照之前的思路,对这个函数求梯度。

我们要使得梯度为0,这里虽然我们得到了求取w的数学式子,但是这个式子并不是一个闭合的公式,无法像线性回归一样直接求解一个矩阵来得到解,那么如何找到满足这个条件的w呢?

梯度下降法

让我们回想一下PLA演算法中求w的过程,是通过错分的数据来一步一步修正的,从而得到最终的w。

这里,我们可以按照类似的思路,一步一步的去修正w,使得Ein的结果越来越小。

在logistic回归中,Ein的式子是平滑的。现在我们可以将这个Ein想象成一个山谷,我们要到达山谷的最低点,就是要沿着当前的梯度最大的方向每次迈出一小步,直到到达谷底,使得Ein最小,得到最佳解w。

线性近似

要确定一个w使得Ein最小,不可能一步到位,指导思路还是由繁化简,用线性近似(linear approximation)的方式来解决问题,我们用多维度的泰勒展开公式来近似Ein,只要给定一个小的η,就可以近似这个Ein。

这里Ein(wt)和η都是已知的,Ein的梯度表示了下降的方向,也可以求出来,唯一要考虑的就是最好的向量v该如何选择。

梯度下降

对于v和Ein的梯度这两个向量,使得其值是最小的方法就是让v向量的方向和Ein的梯度的方向想法,这样使得两个向量的内积是最小的,另外由于v的模是1,还需要有个归一化的步骤。

由于η和▽Ein(wt)的模都是一个常数,可以将其化简成为一个新的η‘,也可以用常数η来表示。

这样我们就得到了logistic回归求解最优化解的步骤。

随机梯度下降法(Stochastic Gradient Descent)

在上一小节的梯度下降法的介绍中,我们知道在每一轮迭代中,计算梯度时要把所有的点对梯度的共享都要计算出来m,如下图所示:

这里在每一轮的时间复杂度都是O(N),这样看起来是有些麻烦费时的。那有没有一种方法可以将每一轮的时间复杂度降为O(1)呢?

如上一节,我们每一次的要更新的v都是要和所算的梯度是反方向的,但是我们能不能通过一个点(xn,yn)而不是N个点来得到这个v呢?

我们可以将求和再除以N的过程想象成一个随机过程的平均,将这个期望用随机的一个抽样来代替。所以这里不是一个真正的梯度,而是在一个点上对err函数做偏微分,把整体的梯度看做是这个随机过程的期望值。

这样,我们可以将随机梯度看做是真正的梯度减去随机的噪声,但是从期望值来说,可能和之前想要走的方向没有太大差别。

所以我们得到了随机梯度下降的方法,这种方法的优点是比较简单,适合在线学习和大量的数据的情形,缺点是稳定性不好,尤其是η太大的话,可能情况很糟糕,所以这里的η经验上取0.1会比较好。

其最终的表达式如下:

参考资料

机器学习基石课程,林轩田,台湾大学

转载请注明作者Jason Ding及其出处

Github主页(http://jasonding1354.github.io/)

CSDN博客(http://blog.csdn.net/jasonding1354)

简书主页(http://www.jianshu.com/users/2bd9b48f6ea8/latest_articles)

时间: 2024-10-03 20:45:09

【机器学习基础】Logistic回归基础的相关文章

机器学习之logistic回归与分类

logistic回归与分类是一种简单的分类算法.在分类的过程中只需要找到一个划分不同类的权重向量即可,对新的数据只需要乘上这个向量并比较就可以得到分类.比如下图的二分类问题: 每个样本点可以看成包含两个特征(x1,x2),现在需要把他们分开,如果这是训练集,他们本身属于哪一个类是已知的,比如说蓝色的属于0类,红色的属于1类,现在我们想通过这些数据建立一个分类标准可以将他们分开,这样再来了一个不知道类别的数据,我们看看这个标准就知道他是属于哪一类的. 像上面这个线性的,那么我们可以建立一个函数模型

机器学习笔记—Logistic回归

本文申明:本系列笔记全部为原创内容,如有转载请申明原地址出处.谢谢 序言:what is logistic regression? Logistics 一词表示adj.逻辑的;[军]后勤学的n.[逻]数理逻辑;符号逻辑;[军]后勤学, “回归”是由英国著名生物学家兼统计学家高尔顿在研究人类遗传问题时提出来的.为了研究父代与子代身高的关系,高尔顿搜集了1078对父亲及其儿子的身高数据.他发现这些数据的散点图大致呈直线状态,也就是说,总的趋势是父亲的身高增加时,儿子的身高也倾向于增加.但是,高尔顿对

机器学习实战——Logistic回归

回归概述(个人理解的总结) 回归是数学中的一种模拟离散数据点的数学模型的方法,拟合一个连续的函数从而可以对未知的离散数据点进行分类或预测.这种方法有一个统一的形式,给定n维特征的数据集合,对任意一个数据点Xi={x(1)i,x(2)i,...,x(n)i}的每个维度都有一个回归系数wi与之对应,整个模型就存在一个系数向量w={w1,w2...wn}.如果是系数向量w与特征Xi的线性组合,那么就是一个n空间下的超平面,如果对应分类问题,那么这个超平面就是分类器的决策平面(分类超平面).由于线性组合

[机器学习实战] Logistic回归

1. Logistic回归: 1)优点:计算代价不高,易于理解和实现: 2)缺点:容易欠拟合,分类精度可能不高: 3)适用数据类型:数值型和标称型数据: 2. 分类思想: 根据现有数据对分类边界线建立回归公式,以此进行分类. 这里借助sigmoid函数,其特点为当z为0时,sigmoid函数值为0.5:随着z的增大,对应的sigmoid值将逼近1: 而随着z的减小,sigmoid值将逼近0. σ(z) = 1/(1 + e-z) 上述 z = w0x0 + w1x1 + w2x2 + ....

机器学习算法-logistic回归算法

Logistic回归算法调试 一.算法原理 Logistic回归算法是一种优化算法,主要用用于只有两种标签的分类问题.其原理为对一些数据点用一条直线去拟合,对数据集进行划分.从广义上来讲这也是一种多元线性回归方法,所不同的是这种算法需要找出的是能够最大可能地将两个类别划分开来而不是根据直线关系预测因变量的值.Logistic回归算法的核心部分是sigmoid函数: 其中,xi为数据集的第i个特征.定义损失函数损失函数: 损失函数越小表明曲线拟合的效果就越好.利用梯度向上法更新x的系数W,求出W的

机器学习基础-Logistic回归2

随机梯度上升法--一次仅用一个样本点来更新回归系数(因为可以在新样本到来时对分类器进行增量式更新,因而属于在线学习算法) 梯度上升法在每次更新回归系统时都需要遍历整个数据集,该方法在处理100个左右的数据集时尚可,但如果有数十亿样本和成千上万的特征,那么该方法的计算复杂度太高了. 随机梯度上升算法伪代码: 所有回归系数初始化为1 对数据集中每个样本 计算该样本的梯度 使用alpha*gradient更新回归系数值 返回回归系数值 def stocGradAscent0(dataMatrix, c

机器学习:logistic回归

逻辑回归是一个形式是Y=1/(1+E(-X))的函数,它的特点是: 1, 当X>0,随着X增大,Y很快的接近1: 2,当x<0,随着X的减小,Y很快的接近0: 3,当X=0时,Y=1/2. 由于逻辑回归的这种特性(在0-1之间连续),它被用来判断一个学习算法是否正确. 除了正确和不正确的结果之外,使用逻辑回归的好处在于,它还能告诉你,你离正确的结果还差多少,从而引导你向正确的方向前进.因此它常常和梯度上升的算法结合起来.下面的代码体现了这样的例子: 输入参数1是100行,2列的矩阵: 输入参数

机器学习实战 logistic回归 python代码

# -*- coding: utf-8 -*- """ Created on Sun Aug 06 15:57:18 2017 @author: mdz """ '''http://blog.chinaunix.net/xmlrpc.php?r=blog/article&uid=9162199&id=4223505''' import numpy as np #读取数据 def loadDataSet(): dataList=[]

机器学习之logistic分类线性与非线性实验(续)

本节续上节 机器学习之logistic回归与分类 对logistic分类的线性与非线性进行实验.上节中的"种子"分类实例中,样本虽然有7维,但是很大很大程度上符合线性可分的,为了在说明上节中的那种logistic对于非线性不可分,进行如下的两组样本进行实验,一组线性,一组非线性,样本如下: 线性样本: 非线性样本: 为了防止完全可分,在1,2类样本的分界面上重叠一部分样本,也就是说这部分样本很难分出来,图中的样本也可以看出来. 线性与非线性样本都包含两类,每类100个样本点. 先对线性