UVALive - 3263 - That Nice Euler Circuit (计算几何~~)

UVALive - 3263

That Nice Euler Circuit

Time Limit: 3000MS   Memory Limit: Unknown   64bit IO Format: %lld & %llu

Submit Status

Description

Little Joey invented a scrabble machine that he called Euler, after the great mathematician. In his primary school Joey heard about the nice story of how Euler started the study about graphs. The problem in
that story was - let me remind you - to draw a graph on a paper without lifting your pen, and finally return to the original position. Euler proved that you could do this if and only if the (planar) graph you created has the following two properties: (1) The
graph is connected; and (2) Every vertex in the graph has even degree.

Joey‘s Euler machine works exactly like this. The device consists of a pencil touching the paper, and a control center issuing a sequence of instructions. The paper can be viewed as the infinite two-dimensional plane; that means you do not need to worry about
if the pencil will ever go off the boundary.

In the beginning, the Euler machine will issue an instruction of the form (X0, Y0) which moves the pencil to some starting position (X0, Y0).
Each subsequent instruction is also of the form (X‘Y‘), which means to move the pencil from the previous position to the new position (X‘Y‘), thus draw a line segment
on the paper. You can be sure that the new position is different from the previous position for each instruction. At last, the Euler machine will always issue an instruction that move the pencil back to the starting position (X0, Y0).
In addition, the Euler machine will definitely not draw any lines that overlay other lines already drawn. However, the lines may intersect.

After all the instructions are issued, there will be a nice picture on Joey‘s paper. You see, since the pencil is never lifted from the paper, the picture can be viewed as an Euler circuit.

Your job is to count how many pieces (connected areas) are created on the paper by those lines drawn by Euler.

Input

There are no more than 25 test cases. Ease case starts with a line containing an integer N4,
which is the number of instructions in the test case. The following N pairs of integers give the instructions and appear on a single line separated by single spaces. The first pair is the first instruction that gives the
coordinates of the starting position. You may assume there are no more than 300 instructions in each test case, and all the integer coordinates are in the range (-300, 300). The input is terminated when N is 0.

Output

For each test case there will be one output line in the format

Case x: There are w pieces.,

where x is the serial number starting from 1.

Note: The figures below illustrate the two sample input cases.

Sample Input

5
0 0 0 1 1 1 1 0 0 0
7
1 1 1 5 2 1 2 5 5 1 3 5 1 1
0

Sample Output

Case 1: There are 2 pieces.
Case 2: There are 5 pieces.

Source

Regionals 2004 >> Asia
- Shanghai

首先,这里要运用到离散数学里的定理——欧拉定理:在平面图中,其顶点,边,面的关系为 v + r - e = 2 (v为顶点数,r为面数,e为边数)

则只需求出顶点数以及边数就可以求出面数了

这里平面图的结点由原来的结点和新增的结点组成,由于可能出现三线共点,需要删除重复的点(这里用unique)

AC代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <cmath>
using namespace std;

struct Point {
	double x, y;
	Point(double x = 0, double y = 0) : x(x) , y(y) { }
};

typedef Point Vector;  

Vector operator + (Vector A, Vector B) { return Vector(A.x+B.x, A.y+B.y); }
Vector operator - (Vector A, Vector B) { return Vector(A.x-B.x, A.y-B.y); }
Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); }
Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); } 

bool operator < (const Point& a, const Point& b) {
	return a.x < b.x || (a.x == b.x && a.y < b.y);
} 

const double eps = 1e-10;
int dcmp(double x) {
	if(fabs(x) < eps) return 0; else return x < 0 ? -1 : 1;
}

bool operator == (const Point& a, const Point& b) {
	return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0;
}

double Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y; }
double Length(Vector A) { return sqrt(Dot(A, A)); }
double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); } 

double Cross(Vector A, Vector B) { return A.x*B.y - A.y*B.x; }
double Area2(Point A, Point B, Point C) { return Cross(B-A, C-A); }

Vector Rotate(Vector A, double rad) {
	return Vector(A.x*cos(rad) - A.y*sin(rad), A.x*sin(rad)+A.y*cos(rad) );
} 

Vector Normal(Vector A) {
    double L = Length(A);
    return Vector(-A.y/L, A.x/L);
}

Point GetLineIntersection(Point P, Vector v, Point Q, Vector w) {
	Vector u = P - Q;
	double t = Cross(w, u) / Cross(v, w);
	return P + v * t;
} 

double DistanceToLine(Point P, Point A, Point B) {
    Vector v1 = B-A, v2 = P - A;
    return fabs(Cross(v1,v2) / Length(v1));
}  

double DistanceToSegment(Point P, Point A, Point B) {
    if(A==B) return Length(P-A);
    Vector v1 = B - A, v2 = P - A, v3 = P - B;
    if(dcmp(Dot(v1, v2)) < 0) return Length(v2);
    else if(dcmp(Dot(v1, v3)) > 0) return Length(v3);
    else return fabs(Cross(v1, v2)) / Length(v1);
}  

Point GetLineProjection(Point P, Point A, Point B) {
	Vector v = B - A;
	return A + v * ( Dot(v, P-A) / Dot(v, v) );
}  

bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2) {
	double c1 = Cross(a2 - a1, b1 - a1), c2 = Cross(a2 - a1, b2 - a1),
			c3 = Cross(b2 - b1, a1 - b1), c4 = Cross(b2 - b1, a2 - b1);
	return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0;
} 

bool OnSegment(Point p, Point a1, Point a2) {
	return dcmp(Cross(a1 - p, a2 - p)) == 0 && dcmp(Dot(a1 - p, a2 - p)) < 0;
} 

double ConvexPolygonArea(Point* p, int n) {
    double area = 0;
    for(int i = 1; i < n-1; i++)
        area += Cross(p[i] - p[0], p[i + 1] - p[0]);
    return area / 2;
}  

const int maxn = 300 + 10;
Point P[maxn], V[maxn*maxn]; 

int main() {
	int n, cas = 1;
	while(scanf("%d", &n) == 1 && n) {
		for(int i = 0; i < n; i++) {
			scanf("%lf %lf", &P[i].x, &P[i].y);
			V[i] = P[i];
		}
		n--;
		int c = n, e = n;
		for(int i = 0; i < n; i++)
			for(int j = i + 1; j < n; j++)
				if(SegmentProperIntersection(P[i], P[i+1], P[j], P[j+1]))
					V[c++] = GetLineIntersection(P[i], P[i+1] - P[i], P[j], P[j+1] - P[j]);
		sort(V, V + c);
		c = unique(V, V + c) - V;//unique为去重函数,即“去除”相邻的重复元素,返回值为最后一个顶点地址
		for(int i = 0; i < c; i++)
			for(int j = 0; j < n; j++)
				if(OnSegment(V[i], P[j], P[j+1])) e++;
		printf("Case %d: There are %d pieces.\n", cas++, e + 2 - c);
	}
	return 0;
} 
时间: 2024-10-12 04:15:57

UVALive - 3263 - That Nice Euler Circuit (计算几何~~)的相关文章

UVALive 3263 That Nice Euler Circuit 计算几何欧拉定理

欧拉定理:P+F-E=2 That Nice Euler Circuit Time Limit: 3000MS   Memory Limit: Unknown   64bit IO Format: %lld & %llu Submit Status Description Little Joey invented a scrabble machine that he called Euler, after the great mathematician. In his primary schoo

UVALive - 3263 That Nice Euler Circuit (几何)

UVALive - 3263 That Nice Euler Circuit (几何) ACM 题目地址: UVALive - 3263 That Nice Euler Circuit 题意: 给出一个点,问连起来后的图形把平面分为几个区域. 分析: 欧拉定理有:设平面图的顶点数.边数.面数分别V,E,F则V+F-E=2 大白的题目,做起来还是很有技巧的. 代码: /* * Author: illuz <iilluzen[at]gmail.com> * File: LA3263.cpp * C

uvalive 3263 That Nice Euler Circuit

题意:平面上有一个包含n个端点的一笔画,第n个端点总是和第一个端点重合,因此团史一条闭合曲线.组成一笔画的线段可以相交,但是不会部分重叠.求这些线段将平面分成多少部分(包括封闭区域和无限大区域). 分析:若是直接找出所有区域,或非常麻烦,而且容易出错.但用欧拉定理可以将问题进行转化,使解法变容易. 欧拉定理:设平面图的顶点数.边数和面数分别为V,E,F,则V+F-E=2. 这样,只需求出顶点数V和边数E,就可以求出F=E+2-V. 设平面图的结点由两部分组成,即原来的结点和新增的结点.由于可能出

平面上欧拉定理:poj 2284( LA 3263 ) That Nice Euler Circuit

3263 - That Nice Euler Circuit Time limit: 3.000 seconds Description Little Joey invented a scrabble machine that he called Euler, after the great mathematician. In his primary school Joey heard about the nice story of how Euler started the study abo

简单几何(求划分区域) LA 3263 That Nice Euler Circuit

题目传送门 题意:一笔画,问该图形将平面分成多少个区域 分析:训练指南P260,欧拉定理:平面图定点数V,边数E,面数F,则V + F - E =  2.那么找出新增的点和边就可以了.用到了判断线段相交,求交点,判断点在线上 /************************************************ * Author :Running_Time * Created Time :2015/10/22 星期四 09:10:09 * File Name :LA_3263.cpp

POJ2284 That Nice Euler Circuit (欧拉公式)(计算几何 线段相交问题)

That Nice Euler Circuit Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 1977   Accepted: 626 Description Little Joey invented a scrabble machine that he called Euler, after the great mathematician. In his primary school Joey heard about

poj2284 That Nice Euler Circuit(欧拉公式)

题目链接:poj2284 That Nice Euler Circuit 欧拉公式:如果G是一个阶为n,边数为m且含有r个区域的连通平面图,则有恒等式:n-m+r=2. 欧拉公式的推广: 对于具有k(k≥2)个连通分支的平面图G,有:n-m+r=k+1. 题意:给出连通平面图的各顶点,求这个欧拉回路将平面分成多少区域. 题解:根据平面图的欧拉定理“n-m+r=2”来求解区域数r. 顶点个数n:两两线段求交点,每个交点都是图中的顶点. 边数m:在求交点时判断每个交点落在第几条边上,如果一个交点落在

UVA LIVE-3263 - That Nice Euler Circuit

画一个顶点为偶数的封闭的二维图,当然.这个图能够自交,给出画的过程中的一些轨迹点.求出这个图把二次元分成了几部分,比如三角形把二次元分成了两部分. 这个的话,有图中顶点数+部分数-棱数=2的定律,这是核心思想.也就是所谓的欧拉定律拓扑版,好吧,事实上细致想想也是可以想出这个规律来的. 做出这题纯属意外,因为给的点的坐标全是用整数表示,为了不用考虑精度问题,一開始.我就想仅仅用这些点.就是说不再算出其他交点之类的,就把答案算出, 由于当前轨迹与之前轨迹无非三种情况:规范与不规范相交,不相交 不相交

【UVA】1342 - That Nice Euler Circuit(几何+欧拉定理)

E 为边数 ,V 为点数,F为面数 那么 F = E + 2 - V(其中包括了一个无限大的面) 这道题被自己的习惯坑了一下#define MAXD 300 + 10 和#define MAXD 310 是不一样的 14113235 1342 That Nice Euler Circuit Accepted C++ 0.082 2014-08-29 15:12:20 自己的代码: #include<cstdio> #include<cstring> #include<iost