1. Master 单节点可用性
Master节点在Spark中所承载的作用是分配Application到Worker节点,维护Worker节点,Driver,Application的状态。
在Spark中,Master本身也提供了基于硬盘的单节点的可用性,也就是可以直接通过重启Master,Master通过读取硬盘里保存的状态,进行单节点的恢复。
In order to enable this recovery mode, you can set SPARK_DAEMON_JAVA_OPTS in spark-env using this configuration:
System property | Meaning |
---|---|
spark.deploy.recoveryMode |
Set to FILESYSTEM to enable single-node recovery mode (default: NONE). |
spark.deploy.recoveryDirectory |
The directory in which Spark will store recovery state, accessible from the Master‘s perspective. |
通过设置recoveryMode为FILESYSTEM,当Master节点Down掉时候,节点的可用性通过重启Master节点来恢复,Master会通过获取磁盘里保存的集群原来的状态进行恢复。
如果没有设置recoveryMode,默认为不支持恢复,Master重启的时候,不会进行对前状态进行恢复。
备注:恢复节点的方式与多节点可用性后续的处理方式基本类似,就不在此具体讨论细节了
2. Master 多节点可用性
单节点的问题很明显,虽然有恢复的方案,很明显在重启的过程中,是无法继续对资源调度和分配的,而磁盘也是具有单节点特性(假使没有构建磁盘阵列),同样也不具备高可用性的特点
Spark引入了多Master节点来提高集群可用性
设置多Master节点的方式:
-Dspark.deploy.recoveryMode=ZOOKEEPER
2.1 StandBy Master 节点
在Spark的多Master节点设计中,分为两个角色,一个是主Master节点提供服务,另一个角色是备用Master节点
当Master节点处于备用的状态时候,是不提供服务的 ,备用节点只是在处于等待状态,只有当主Master节点crash掉后,备用节点才升级成为主Master提供服务
主备节点互相不感知,不提供负载均衡,不是对等节点,在上图可以看到每个提交任务的Client并不提交任务到StandBy节点
2.2 ZooKeeper 选举Main Master节点
在Master多节点中,只有Main Master才是提供服务的,这个设计就象选举Leader,这种方式非常适合使用Zookeeper的Watch模式。
Spark并没有直接使用Zookeeper,而是使用了curator 框架(基于Zookeeper)进行Master的选举。由于Zookeeper的操作比较底层,操作的是数据结构和节点的状态,curator在上面封装了一层,以应用与不同的应用情景。
在使用Leader模式下,curator的框架开发代码非常简单。使用LeaderLatch, 实现LeaderLatchListener的监听器
override def isLeader() { synchronized { // could have lost leadership by now. if (!leaderLatch.hasLeadership) { return } logInfo("We have gained leadership") updateLeadershipStatus(true) } } override def notLeader() { synchronized { // could have gained leadership by now. if (leaderLatch.hasLeadership) { return } logInfo("We have lost leadership") updateLeadershipStatus(false) } }
isLeader 和 notLeader 分别代表成为Leader或者失去Leader, 在Spark的ZookeeperLeaderElectionAgent.scala里跟新leader的状态
private def updateLeadershipStatus(isLeader: Boolean) { if (isLeader && status == LeadershipStatus.NOT_LEADER) { status = LeadershipStatus.LEADER masterInstance.electedLeader() } else if (!isLeader && status == LeadershipStatus.LEADER) { status = LeadershipStatus.NOT_LEADER masterInstance.revokedLeadership() } }
调用的是在Master.scala的
override def electedLeader() { self.send(ElectedLeader) } override def revokedLeadership() { self.send(RevokedLeadership) }
也就是发了消息ElectedLeader, RevokeLeaderShip 给自己的Netty
Zookeeper默认的leader节点 /spark/leader_election
ls /spark/leader_election [_c_6b494d00-cf91-4d69-8828-942377bafdf1-latch-0000000217, _c_c1f4c10f-9479-4a55-b660-0497c0b54f89-latch-0000000218]
前面应该是UUID后面有一个序列号,由后面的序列号前后来决定谁是 leader, 而序列号前后的生成取决于Master连接zookeeper的顺序,熟悉zookeeper的知道这些节点是ephemeral节点。
2.3 StandBy Master 节点的恢复
在前面章节里已经描述了如何选为Main Master, 当Main Master 当机后,备用的Master通过选举成为了 Main Master,备用的Master Netty收到了ElectedLeader的消息,在成为主Master节点前,先检查集群状态并准备进行恢复
case ElectedLeader => val (storedApps, storedDrivers, storedWorkers) = persistenceEngine.readPersistedData(rpcEnv) state = if (storedApps.isEmpty && storedDrivers.isEmpty && storedWorkers.isEmpty) { RecoveryState.ALIVE } else { RecoveryState.RECOVERING } logInfo("I have been elected leader! New state: " + state) if (state == RecoveryState.RECOVERING) { beginRecovery(storedApps, storedDrivers, storedWorkers) recoveryCompletionTask = forwardMessageThread.schedule(new Runnable { override def run(): Unit = Utils.tryLogNonFatalError { self.send(CompleteRecovery) } }, WORKER_TIMEOUT_MS, TimeUnit.MILLISECONDS) }
2.3.1 获取具体的信息
首先从持久化层获取Application, Drivers, Worker 的信息,也就是通过Curator 的框架获取原Master保存的信息
Zookeeper默认的master状态 /spark/master_status
ls /spark/master_status [worker_worker-20170329184022-192.168.121.101-55109, worker_worker-20170330035822-192.168.121.102-41307]
Apps, Driver, Workers 的信息都会被保存在master_status节点里,而每个子节点的内容就是序列化过的ApplicationInfo, DriverInfo, WorkInfo
获选的主Master通过获取Zookeeper上的节点的值,反序列化重构Application, Driver, Worker的信息
2.3.2 恢复Application,Driver,Workers
private def beginRecovery(storedApps: Seq[ApplicationInfo], storedDrivers: Seq[DriverInfo], storedWorkers: Seq[WorkerInfo]) { for (app <- storedApps) { logInfo("Trying to recover app: " + app.id) try { registerApplication(app) app.state = ApplicationState.UNKNOWN app.driver.send(MasterChanged(self, masterWebUiUrl)) } catch { case e: Exception => logInfo("App " + app.id + " had exception on reconnect") } } for (driver <- storedDrivers) { // Here we just read in the list of drivers. Any drivers associated with now-lost workers // will be re-launched when we detect that the worker is missing. drivers += driver } for (worker <- storedWorkers) { logInfo("Trying to recover worker: " + worker.id) try { registerWorker(worker) worker.state = WorkerState.UNKNOWN worker.endpoint.send(MasterChanged(self, masterWebUiUrl)) } catch { case e: Exception => logInfo("Worker " + worker.id + " had exception on reconnect") } } }
2.3.2.1 恢复Application
在前面一章说过如何分配Executor,里面也说到了ApplicationInfo 结构。在Master做Recovery的时候,把保存在Zookeeper里的Applications 重新在Master里重新注册
这里有几个注意点:
1. Zookeeper 里保存的是正在运行的Applications,但在Spark里并没有进行细粒度的控制,只要是在运行的Applications,都会重新进行被分配executor,哪怕正在分配或者已经在计算了。
2. 注册完Application 并没有马上进行Application的调度,直到恢复完Worker,Driver才开始进行进行
private def completeRecovery() { // Ensure "only-once" recovery semantics using a short synchronization period. if (state != RecoveryState.RECOVERING) { return } state = RecoveryState.COMPLETING_RECOVERY // Kill off any workers and apps that didn‘t respond to us. workers.filter(_.state == WorkerState.UNKNOWN).foreach(removeWorker) apps.filter(_.state == ApplicationState.UNKNOWN).foreach(finishApplication) // Reschedule drivers which were not claimed by any workers drivers.filter(_.worker.isEmpty).foreach { d => logWarning(s"Driver ${d.id} was not found after master recovery") if (d.desc.supervise) { logWarning(s"Re-launching ${d.id}") relaunchDriver(d) } else { removeDriver(d.id, DriverState.ERROR, None) logWarning(s"Did not re-launch ${d.id} because it was not supervised") } } state = RecoveryState.ALIVE schedule() logInfo("Recovery complete - resuming operations!") }
在completeRecovery 的函数里,只有当Master的节点的状态RecoveryState.ALIVE的时候,Master才调用了Schedule重新调度已经注册的Application
2.3.2.2 恢复Worker
第一步:注册Worker,这里只是简单的确认了Worker地址(ip+port)的格式是否正确和是否已经注册过了。
第二步:设置Worker的状态为UNKNOW
第三步:发送MasterChange消息给Worker
第四步:Worker将自己的Application ID, Executor的信息WorkerSchedulerStateResponse发回给Master
第五步:Master的跟新信息中ApplicationInfo中的Executor信息
第三步到第五步都是通过消息来异步消息恢复的,在没有收到WorkerScheduleStateResponse,是无法开始准确进行Application调度的,此时的Worker的里的信息不准确,例如用了多少核
2.3.3 完成Recovery
因为要完成worker信息的传递,而Recovery的过程是在Netty的接收ElectedLeader消息的线程中进行的,而比如象Worker汇报消息的不能被堵塞,在这里Master起了一个定时任务去触发任务的完成,定时任务的时间就是worker连接的超时时间,在这里的前提是所有的workers会在超时间段内回复消息。
recoveryCompletionTask = forwardMessageThread.schedule(new Runnable { override def run(): Unit = Utils.tryLogNonFatalError { self.send(CompleteRecovery) } }, WORKER_TIMEOUT_MS, TimeUnit.MILLISECONDS)
既然还是发消息,对Master发送了CompleteRecovery的消息,在CompleteRecovery的消息中重新调度了Application。
2.3.4 Recovery中的几个状态
Master节点在recovery中有四个状态:
RecoveryState.ALIVE RecoveryState.RECOVERING RecoveryState.COMPLETING_RECOVERY RecoveryState.STANDBY
ALIVE ----- 活着
RECOVERING ------ 恢复的过程中
COMPLETING_RECOVERY ----------运行在completeRecovery函数中
STANDBY ------------ 备份节点
在整个Recovery的恢复过程中状态是 从 STANDBY => RECOVERING => COMPLETING_RECOVERY => ALIVE
1. 在整个Recovery的恢复过程中可以Register Application,当然必须Elected_Leader的消息函数块运行完,因为在同一个线程中
2. 在整个Recovery的恢复过程中只有在进入ALIVE的状态,才能进行Application的调度
3 Submit 如何设置多个Master
Spark的master是主和Standby的状态,对submit任务来说,并不能知道目前集群上主Master是那个,提交到Standby的master并不接受任务,容易导致提交任务失败。
Spark 提供了一种简单的方式:在submit 或者在sparkconf里可以设置多个Master, 格式注意是用逗号分隔
--master spark://raintungmaster:7077,raintungslave1:7077
当然你可以也可以设置一个局域网的DNS,通过 healthcheck来判断哪个Master挂了,DNS就指向谁