学习笔记TF051:生成式对抗网络

生成式对抗网络(gennerative adversarial network,GAN),谷歌2014年提出网络模型。灵感自二人博弈的零和博弈,目前最火的非监督深度学习。GAN之父,Ian J.Goodfellow,公认人工智能顶级专家。

原理。
生成式对搞网络包含一个生成模型(generative model,G)和一个判别模型(discriminative model,D)。Ian J.Goodfellow、Jean Pouget-Abadie、Mehdi Mirza、Bing Xu、David Warde-Farley、Sherjil Ozair、Aaron Courville、Yoshua Bengio论文,《Generative Adversarial Network》,https://arxiv.org/abs/1406.2661 。
生成式对抗网络结构:
噪声数据->生成模型->假图片---|
|->判别模型->真/假
打乱训练数据->训练集->真图片-|
生成式对抗网络主要解决如何从训练样本中学习出新样本。生成模型负责训练出样本的分布,如果训练样本是图片就生成相似的图片,如果训练样本是文章名子就生成相似的文章名子。判别模型是一个二分类器,用来判断输入样本是真实数据还是训练生成的样本。
生成式对抗网络优化,是一个二元极小极大博弈(minimax two-player game)问题。使生成模型输出在输入给判别模型时,判断模型秀难判断是真实数据还是虚似数据。训练好的生成模型,能把一个噪声向量转化成和训练集类似的样本。Argustus Odena、Christopher Olah、Jonathon Shlens论文《Coditional Image Synthesis with Auxiliary Classifier GANs》。
辅助分类器生成式对抗网络(auxiliary classifier GAN,AC-GAN)实现。

生成式对抗网络应用。生成数字,生成人脸图像。

生成式对抗网络实现。https://github.com/fchollet/keras/blob/master/examples/mnist_acgan.py 。
Augustus Odena、Chistopher Olah和Jonathon Shlens 论文《Conditional Image Synthesis With Auxiliary Classifier GANs》。
通过噪声,让生成模型G生成虚假数据,和真实数据一起送到判别模型D,判别模型一方面输出数据真/假,一方面输出图片分类。
首先定义生成模型,目的是生成一对(z,L)数据,z是噪声向量,L是(1,28,28)的图像空间。

def build_generator(latent_size):
cnn = Sequential()
cnn.add(Dense(1024, input_dim=latent_size, activation=‘relu‘))
cnn.add(Dense(128 * 7 * 7, activation=‘relu‘))
cnn.add(Reshape((128, 7, 7)))
#上采样,图你尺寸变为 14X14
cnn.add(UpSampling2D(size=(2,2)))
cnn.add(Convolution2D(256, 5, 5, border_mode=‘same‘, activation=‘relu‘, init=‘glorot_normal‘))
#上采样,图像尺寸变为28X28
cnn.add(UpSampling2D(size=(2,2)))
cnn.add(Convolution2D(128, 5, 5, border_mode=‘same‘, activation=‘relu‘, init=‘glorot_normal‘))
#规约到1个通道
cnn.add(Convolution2D(1, 2, 2, border_mode=‘same‘, activation=‘tanh‘, init=‘glorot_normal‘))
#生成模型输入层,特征向量
latent = Input(shape=(latent_size, ))
#生成模型输入层,标记
image_class = Input(shape=(1,), dtype=‘int32‘)
cls = Flatten()(Embedding(10, latent_size, init=‘glorot_normal‘)(image_class))
h = merge([latent, cls], mode=‘mul‘)
fake_image = cnn(h) #输出虚假图片
return Model(input=[latent, image_class], output=fake_image)
定义判别模型,输入(1,28,28)图片,输出两个值,一个是判别模型认为这张图片是否是虚假图片,另一个是判别模型认为这第图片所属分类。

def build_discriminator();
#采用激活函数Leaky ReLU来替换标准的卷积神经网络中的激活函数
cnn = Wequential()
cnn.add(Convolution2D(32, 3, 3, border_mode=‘same‘, subsample=(2, 2), input_shape=(1, 28, 28)))
cnn.add(LeakyReLU())
cnn.add(Dropout(0.3))
cnn.add(Convolution2D(64, 3, 3, border_mode=‘same‘, subsample=(1, 1)))
cnn.add(LeakyReLU())
cnn.add(Dropout(0.3))
cnn.add(Convolution2D(128, 3, 3, border_mode=‘same‘, subsample=(1, 1)))
cnn.add(LeakyReLU())
cnn.add(Dropout(0.3))
cnn.add(Convolution2D(256, 3, 3, border_mode=‘same‘, subsample=(1, 1)))
cnn.add(LeakyReLU())
cnn.add(Dropout(0.3))
cnn.add(Flatten())
image = Input(shape=(1, 28, 28))
features = cnn(image)
#有两个输出
#输出真假值,范围在0~1
fake = Dense(1, activation=‘sigmoid‘,name=‘generation‘)(features)
#辅助分类器,输出图片分类
aux = Dense(10, activation=‘softmax‘, name=‘auxiliary‘)(features)
return Model(input=image, output=[fake, aux])
训练过程,50轮(epoch),把权重保存,每轮把虚假数据生成图处保存,观察虚假数据演化过程。

if __name__ ==‘__main__‘:
#定义超参数
nb_epochs = 50
batch_size = 100
latent_size = 100
#优化器学习率
adam_lr = 0.0002
adam_beta_l = 0.5
#构建判别网络
discriminator = build_discriminator()
discriminator.compile(optimizer=adam(lr=adam_lr, beta_l=adam_beta_l), loss=‘binary_crossentropy‘)
latent = Input(shape=(lastent_size, ))
image_class = Input(shape-(1, ), dtype=‘int32‘)
#生成组合模型
discriminator.trainable = False
fake, aux = discriminator(fake)
combined = Model(input=[latent, image_class], output=[fake, aux])
combined.compile(optimizer=Adam(lr=adam_lr, beta_l=adam_beta_1), loss=[‘binary_crossentropy‘, ‘sparse_categorical_crossentropy‘])
#将mnist数据转化为(...,1,28,28)维度,取值范围为[-1,1]
(X_train,y_train),(X_test,y_test) = mnist.load_data()
X_train = (X_train.astype(np.float32) - 127.5) / 127.5
X_train = np.expand_dims(X_train, axis=1)
X_test = (X_test.astype(np.float32) - 127.5) / 127.5
X_test = np.expand_dims(X_test, axis=1)
num_train, num_test = X_train.shape[0], X_test.shape[0]
train_history = defaultdict(list)
test_history = defaultdict(list)
for epoch in range(epochs):
print(‘Epoch {} of {}‘.format(epoch + 1, epochs))
num_batches = int(X_train.shape[0] / batch_size)
progress_bar = Progbar(target=num_batches)
epoch_gen_loss = []
epoch_disc_loss = []
for index in range(num_batches):
progress_bar.update(index)
#产生一个批次的噪声数据
noise = np.random.uniform(-1, 1, (batch_size, latent_size))
# 获取一个批次的真实数据
image_batch = X_train[index * batch_size:(index + 1) * batch_size]
label_batch = y_train[index * batch_size:(index + 1) * batch_size]
# 生成一些噪声标记
sampled_labels = np.random.randint(0, 10, batch_size)
# 产生一个批次的虚假图片
generated_images = generator.predict(
[noise, sampled_labels.reshape((-1, 1))], verbose=0)
X = np.concatenate((image_batch, generated_images))
y = np.array([1] * batch_size + [0] * batch_size)
aux_y = np.concatenate((label_batch, sampled_labels), axis=0)
epoch_disc_loss.append(discriminator.train_on_batch(X, [y, aux_y]))
# 产生两个批次噪声和标记
noise = np.random.uniform(-1, 1, (2 * batch_size, latent_size))
sampled_labels = np.random.randint(0, 10, 2 * batch_size)
# 训练生成模型来欺骗判别模型,输出真/假都设为真
trick = np.ones(2 * batch_size)
epoch_gen_loss.append(combined.train_on_batch(
[noise, sampled_labels.reshape((-1, 1))],
[trick, sampled_labels]))
print(‘\nTesting for epoch {}:‘.format(epoch + 1))
# 评估测试集,产生一个新批次噪声数据
noise = np.random.uniform(-1, 1, (num_test, latent_size))
sampled_labels = np.random.randint(0, 10, num_test)
generated_images = generator.predict(
[noise, sampled_labels.reshape((-1, 1))], verbose=False)
X = np.concatenate((X_test, generated_images))
y = np.array([1] * num_test + [0] * num_test)
aux_y = np.concatenate((y_test, sampled_labels), axis=0)
# 判别模型是否能判别
discriminator_test_loss = discriminator.evaluate(
X, [y, aux_y], verbose=False)
discriminator_train_loss = np.mean(np.array(epoch_disc_loss), axis=0)
# 创建两个批次新噪声数据
noise = np.random.uniform(-1, 1, (2 * num_test, latent_size))
sampled_labels = np.random.randint(0, 10, 2 * num_test)
trick = np.ones(2 * num_test)
generator_test_loss = combined.evaluate(
[noise, sampled_labels.reshape((-1, 1))],
[trick, sampled_labels], verbose=False)
generator_train_loss = np.mean(np.array(epoch_gen_loss), axis=0)
# 损失值等性能指标记录下来,并输出
train_history[‘generator‘].append(generator_train_loss)
train_history[‘discriminator‘].append(discriminator_train_loss)
test_history[‘generator‘].append(generator_test_loss)
test_history[‘discriminator‘].append(discriminator_test_loss)
print(‘{0:<22s} | {1:4s} | {2:15s} | {3:5s}‘.format(
‘component‘, *discriminator.metrics_names))
print(‘-‘ * 65)
ROW_FMT = ‘{0:<22s} | {1:<4.2f} | {2:<15.2f} | {3:<5.2f}‘
print(ROW_FMT.format(‘generator (train)‘,
*train_history[‘generator‘][-1]))
print(ROW_FMT.format(‘generator (test)‘,
*test_history[‘generator‘][-1]))
print(ROW_FMT.format(‘discriminator (train)‘,
*train_history[‘discriminator‘][-1]))
print(ROW_FMT.format(‘discriminator (test)‘,
*test_history[‘discriminator‘][-1]))
# 每个epoch保存一次权重
generator.save_weights(
‘params_generator_epoch_{0:03d}.hdf5‘.format(epoch), True)
discriminator.save_weights(
‘params_discriminator_epoch_{0:03d}.hdf5‘.format(epoch), True)
# 生成一些可视化虚假数字看演化过程
noise = np.random.uniform(-1, 1, (100, latent_size))
sampled_labels = np.array([
[i] * 10 for i in range(10)
]).reshape(-1, 1)
generated_images = generator.predict(
[noise, sampled_labels], verbose=0)
# 整理到一个方格
img = (np.concatenate([r.reshape(-1, 28)
for r in np.split(generated_images, 10)
], axis=-1) * 127.5 + 127.5).astype(np.uint8)
Image.fromarray(img).save(
‘plot_epoch_{0:03d}_generated.png‘.format(epoch))
pickle.dump({‘train‘: train_history, ‘test‘: test_history},
open(‘acgan-history.pkl‘, ‘wb‘))

训练结束,创建3类文件。params_discriminator_epoch_{{epoch_number}}.hdf5,判别模型权重参数。params_generator_epoch_{{epoch_number}}.hdf5,生成模型权重参数。plot_epoch_{{epoch_number}}_generated.png 。

生成式对抗网络改进。生成式对抗网络(generative adversarial network,GAN)在无监督学习非常有效。常规生成式对抗网络判别器使用Sigmoid交叉熵损失函数,学习过程梯度消失。Wasserstein生成式对抗网络(Wasserstein generative adversarial network,WGAN),使用Wasserstein距离度量,而不是Jensen-Shannon散度(Jensen-Shannon divergence,JSD)。使用最小二乘生成式对抗网络(least squares generative adversarial network,LSGAN),判别模型用最小平方损失小函数(least squares loss function)。Sebastian Nowozin、Botond Cseke、Ryota Tomioka论文《f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization》。

参考资料:
《TensorFlow技术解析与实战》

欢迎付费咨询(150元每小时),我的微信:qingxingfengzi

时间: 2024-08-03 15:26:29

学习笔记TF051:生成式对抗网络的相关文章

学习笔记GAN001:生成式对抗网络,只需10步,从零开始到调试

生成式对抗网络(gennerative adversarial network,GAN),目前最火的非监督深度学习.一个生成网络无中生有,一个判别网络推动进化.学技术,不先着急看书看文章.先把Demo跑起来,顺利进入断点调试.这样就可以边学习边修改边验证,亲自下手参与调试,会比只是当个看客,更有兴趣更有成就感也更容易理解内容. 1?下载并安装Anaconda.https://www.continuum.io/downloads Anaconda的使用可以看这篇文章:http://www.jian

生成式对抗网络GAN 的研究进展与展望

生成式对抗网络GAN的研究进展与展望.pdf 摘要: 生成式对抗网络GAN (Generative adversarial networks) 目前已经成为人工智能学界一个热门的研究方向. GAN的基本思想源自博弈论的二人零和博弈, 由一个生成器和一个判别器构成, 通过对抗学习的方式来训练. 目的是估测数据样本的潜在分布并生成新的数据样本. 在图像和视觉计算.语音和语言处理.信息安全.棋类比赛等领域, GAN 正在被广泛研究,具有巨大的应用前景. 本文概括了GAN 的研究进展, 并进行展望. 在

(转) 简述生成式对抗网络

简述生成式对抗网络 [转载请注明出处]chenrudan.github.io 本文主要阐述了对生成式对抗网络的理解,首先谈到了什么是对抗样本,以及它与对抗网络的关系,然后解释了对抗网络的每个组成部分,再结合算法流程和代码实现来解释具体是如何实现并执行这个算法的,最后给出一个基于对抗网络改写的去噪网络运行的结果,效果虽然挺差的,但是有些地方还是挺有意思的. 1. 对抗样本 2. 生成式对抗网络GAN 3. 代码解释 4. 运行实例 5. 小结 6. 引用 1. 对抗样本(adversarial e

(转)【重磅】无监督学习生成式对抗网络突破,OpenAI 5大项目落地

[重磅]无监督学习生成式对抗网络突破,OpenAI 5大项目落地 [新智元导读]"生成对抗网络是切片面包发明以来最令人激动的事情!"LeCun前不久在Quroa答问时毫不加掩饰对生成对抗网络的喜爱,他认为这是深度学习近期最值得期待.也最有可能取得突破的领域.生成对抗学习是无监督学习的一种,该理论由 Ian Goodfellow 提出,此人现在 OpenAI 工作.作为业内公认进行前沿基础理论研究的机构,OpenAI 不久前在博客中总结了他们的5大项目成果,结合丰富实例介绍了生成对抗网络

GAN生成式对抗网络的原理

生成式对抗网络(GAN, Generative Adversarial Networks )是一种深度学习模型 GAN两个核心模块 GAN核心是两个模块. 1.生成器模块 --generator 2.判别器模块--desciminator GAN通俗原理解释 为了通俗的解释GAN原理,可以类比为伪造货币的例子(这个比方纯粹为了解释) 现在有个伪造货币的任务. 你有一堆真实的货币,一个可以不断提高鉴别能力的鉴定货币真伪的设备,还有一个可以提高伪造能力的伪造货币的设备. 1.我们继续不断的强化鉴定设

经典生成式对抗网络(GANs)的理解

1. 简介 首先简要介绍一下生成模型(Generative model)与判别模型(Discriminative mode)的概念: 生成模型:对联合概率进行建模,从统计的角度表示数据的分布情况,刻画数据是如何生成的,收敛速度快,例如朴素贝叶斯,GDA,HMM等.    判别模型:对条件概率P(Y|X) 进行建模,不关心数据如何生成,主要是寻找不同类别之间的最优分类面,例如LR,SVM等. 判别模型在深度学习乃至机器学习领域取得了巨大成功,其本质是将样本的特征向量映射成对应的label:而生成模

Day3: Python学习笔记之计算机基础——网络片

Day3: Python学习笔记之计算机基础--网络片 什么是互联网协议以及为何要有互联网协议? ?互联网协议本质上是为了方便连接两台计算机而指定的一系列统一的标准. osi五层模型 计算机之间要实现数据传输必须要经过以下五层协议: ? 模型 ,协议 ,硬件 ? 应用层, http协议.用户自定义协议 ? 传输层, TCP/UPD协议 ,四层交换机.四层路由器 ? 网络层, IP协议, 三层交换机.路由器 ? 数据链路层, 以太网.电信号分组, 网桥.以太网交换机.网卡 ? 物理层, 传递电信号

不要怂,就是GAN (生成式对抗网络) (五):无约束条件的 GAN

GAN 这个领域发展太快,日新月异,各种 GAN 层出不穷,前几天看到一篇关于 Wasserstein GAN 的文章,讲的很好,在此把它分享出来一起学习:https://zhuanlan.zhihu.com/p/25071913.相比 Wasserstein GAN ,我们的 DCGAN 好像低了一个档次,但是我们伟大的教育家鲁迅先生说过:"合抱之木,生于毫末:九层之台,起于累土:千里之行,始于足下",(依稀记得那大概是我 7 - 8 岁的时候,鲁迅先生依偎在我身旁,带着和蔼可亲切的

docker 学习笔记之docker连接网络的设置

1.如果docker主机不需要通过代理连接外网 则docker的相关命令(如docker search)或docker容器与网络相关的操作都可以正常进行,不需要特殊设置. 2.当docker主机 是通过代理才能连接外网时,采用服务方式启动守护进程 如果docker守护进程是通过服务的方式启动的(sudo start docker) 当我们执行如  docker search ubuntu 命令时,会报错 Error response from daemon: Get https://index.