linux kernel如何处理大端小端字节序

最近在做将kernel由小端处理器(arm)向大端处理器(ppc)的移植的工作,现在kernel进入console稳定工作,基本工作已经完成,不过移植中有很多心得还是需要总结下,今天先将kernel对于大小端字节序的处理来总结下。

之前写过大小端字节序的思考,文章链接地址:http://blog.csdn.net/skyflying2012/article/details/42065427。

根据之前的理解,字节序可以认为是处理器主观的概念,就像人如何去看待事物一样,处理器分大端和小端,对于内存的读写,只要保证数据类型一致,就不存在字节序的问题。

因此我感觉,字节序不同造成的最大差异在于对于寄存器的读写。因为外设寄存器都是小端的(根据kernel代码得出结论,下面还会在详细解释)

根据我之前字节序思考的文章,对于寄存器读写差异,有2种方案:

(1)从硬件上解决这个问题,对于32位cpu,将32根数据总线反接,但是这样对于寻址小于32位数据可能有问题,并且不能所有模块都反接(如内存),这还涉及到编译器的问题。

(2)从软件上解决这个问题,在底层读写寄存器函数中,将读/写的数据进行swap。

作为软件人员,我最关心第二种方案是否可行,因为在读写寄存器时对数据进行swap,增加了寄存器读写的复杂度,原来一条存储/加载指令可以完成的工作,现在可能需要增加一些更swap相关的指令,无法保证寄存器操作的原子性了。对于高性能,大并发的系统,可能造成竞态。

因此用最少的指令完成数据swap和r/w寄存器,才能保证linux系统正常稳定运行。

在移植bootloader中我是将数据进行位移来完成swap,因bootloader单进程,不会存在竞态问题。

在kernel移植时很担心这个问题,但是发现kernel下已经提供了大小端处理器操作寄存器时的通用函数,就是readl/writel(以操作32位寄存器为例)。

对于driver的开发者不需要关心处理器的字节序,寄存器操作直接使用readl/writel即可。

网上有很多文章提到readl/writel,但是没有具体分析其实现。

今天就主要来分析下readl/writel如何实现高效的数据swap和寄存器读写。我们就以readl为例,针对big-endian处理器,如何来对寄存器数据进行处理。

kernel下readl定义如下,在include/asm-generic/io.h

#define readl(addr) __le32_to_cpu(__raw_readl(addr))

__raw_readl是最底层的寄存器读写函数,很简单,就从直接获取寄存器数据。来看__le32_to_cpu的实现,该函数针对字节序有不同的实现,对于小端处理器,在./include/linux/byteorder/little_endian.h中,如下:

#define __le32_to_cpu(x) ((__force __u32)(__le32)(x))

相当于什么都没做。而对于大端处理器,在./include/linux/byteorder/big_endian.h中,如下:

#define __le32_to_cpu(x) __swab32((__force __u32)(__le32)(x))

看字面意思也可以看出,__swab32实现数据翻转。等下我们就来分析__swab32的实现,精髓就在这个函数。

但是这之前先考虑一个问题,对于不同CPU,如arm mips ppc,怎么来选择使用little_endian.h还是big_endian.h的呢。

答案是,针对不同处理器平台,有arch/xxx/include/asm/byteorder.h头文件,来看下arm mips ppc的byteorder.h分别是什么。

arch/arm/include/asm/byteorder.h

 *  arch/arm/include/asm/byteorder.h
 *
 * ARM Endian-ness.  In little endian mode, the data bus is connected such
 * that byte accesses appear as:
 *  0 = d0...d7, 1 = d8...d15, 2 = d16...d23, 3 = d24...d31
 * and word accesses (data or instruction) appear as:
 *  d0...d31
 *
 * When in big endian mode, byte accesses appear as:
 *  0 = d24...d31, 1 = d16...d23, 2 = d8...d15, 3 = d0...d7
 * and word accesses (data or instruction) appear as:
 *  d0...d31
 */
#ifndef __ASM_ARM_BYTEORDER_H
#define __ASM_ARM_BYTEORDER_H

#ifdef __ARMEB__
#include <linux/byteorder/big_endian.h>
#else
#include <linux/byteorder/little_endian.h>
#endif

#endif

arch/mips/include/asm/byteorder.h

/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * Copyright (C) 1996, 99, 2003 by Ralf Baechle
 */
#ifndef _ASM_BYTEORDER_H
#define _ASM_BYTEORDER_H

#if defined(__MIPSEB__)
#include <linux/byteorder/big_endian.h>
#elif defined(__MIPSEL__)
#include <linux/byteorder/little_endian.h>
#else
# error "MIPS, but neither __MIPSEB__, nor __MIPSEL__???"
#endif

#endif /* _ASM_BYTEORDER_H */

arch/powerpc/include/asm/byteorder.h

#ifndef _ASM_POWERPC_BYTEORDER_H
#define _ASM_POWERPC_BYTEORDER_H

/*
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */
#include <linux/byteorder/big_endian.h>

#endif /* _ASM_POWERPC_BYTEORDER_H */

可以看出arm mips在kernel下大小端都支持,arm mips也的确是可以选择处理器字节序。ppc仅支持big-endian。(其实ppc也是支持选择字节序的)

有了byteorder.h,我们在编写driver时不需要关心处理器的字节序,只需要包含byteorder.h即可。

接下来看下最关键的__swab32函数,如下:

在include/linux/swab.h中

/**
 * __swab32 - return a byteswapped 32-bit value
 * @x: value to byteswap
 */
#define __swab32(x)                 (__builtin_constant_p((__u32)(x)) ?     ___constant_swab32(x) :             __fswab32(x))

宏定义展开,是一个条件判断符。

__builtin_constant_p是一个gcc的内建函数, 用于判断一个值在编译时是否是常数,如果参数是常数,函数返回 1,否则返回 0。

如果数据是常数,则__constant_swab32,实现如下:

#define ___constant_swab32(x) ((__u32)(                 (((__u32)(x) & (__u32)0x000000ffUL) << 24) |            (((__u32)(x) & (__u32)0x0000ff00UL) <<  8) |            (((__u32)(x) & (__u32)0x00ff0000UL) >>  8) |            (((__u32)(x) & (__u32)0xff000000UL) >> 24)))

对于常数数据,采用的是普通的位移然后拼接的方法,对于常数,这样的消耗是有必要的(这是kernel的解释,不是很理解)

如果数据是运行时计算数据,则使用__fswab32,实现如下:

static inline __attribute_const__ __u32 __fswab32(__u32 val)
{
#ifdef __arch_swab32
    return __arch_swab32(val);
#else
    return ___constant_swab32(val);
#endif
}

如果未定义__arch_swab32,则还是采用__constant_swab32方法翻转数据,但是arm mips ppc都定义了各自平台的__arch_swab32,来实现一个针对自己平台的高效的swap,分别定义如下:

arch/arm/include/asm/swab.h

static inline __attribute_const__ __u32 __arch_swab32(__u32 x)
{
    __asm__ ("rev %0, %1" : "=r" (x) : "r" (x));
    return x;
}

arch/mips/include/asm/swab.h

static inline __attribute_const__ __u32 __arch_swab32(__u32 x)
{
    __asm__(
    "   wsbh    %0, %1          \n"
    "   rotr    %0, %0, 16      \n"
    : "=r" (x)
    : "r" (x));

    return x;
}

arch/powerpc/include/asm/swab.h

static inline __attribute_const__ __u32 __arch_swab32(__u32 value)
{
    __u32 result;

    __asm__("rlwimi %0,%1,24,16,23\n\t"
        "rlwimi %0,%1,8,8,15\n\t"
        "rlwimi %0,%1,24,0,7"
        : "=r" (result)
        : "r" (value), "0" (value >> 24));
    return result;
}

可以看出,arm使用1条指令(rev数据翻转指令),mips使用2条指令(wsbh rotr数据交换指令),ppc使用3条指令(rlwimi数据位移指令),来完成了32 bit数据的翻转。这相对于普通的位移拼接的方法要高效的多!

其实从函数名__fswab也可以看出是要实现fast swap的。

我们反过来思考下,kernel针对小端处理器的寄存器读写数据没有做任何处理,而对于大端处理器却做了swap,这也说明了外设寄存器数据排布是小端字节序的。

时间: 2024-08-07 20:59:51

linux kernel如何处理大端小端字节序的相关文章

理解字节序 大端字节序和小端字节序

1. 计算机硬件有两种储存数据的方式:大端字节序(big endian)和小端字节序(little endian). 举例来说,数值0x2211使用两个字节储存:高位字节是0x22,低位字节是0x11. 大端字节序:高位字节在前,低位字节在后,这是人类读写数值的方法. 小端字节序:低位字节在前,高位字节在后,即以0x1122形式储存. 同理,0x1234567的大端字节序和小端字节序的写法如下图. 2. 我一直不理解,为什么要有字节序,每次读写都要区分,多麻烦!统一使用大端字节序,不是更方便吗?

小端字节序与大端字节序

端模式分为:小端字节序和大端字节序,也就是字节在内存中的顺序. 小端字节序:低字节存于内存低地址:高字节存于内存高地址.如一个long型数据0x12345678 0x0029f458 0x78 0x0029f459 0x56 0x0029f45a 0x34 0x0029f45b 0x12 在以上数据存放于内存中的表现形式中,0x0029f458 < 0x0029f459 < 0x0029f45a < 0x0029f45b, 可以知道内存的地址是由低到高的顺序:而数据的字节也是由低到高的,

内存对齐,大端字节 &nbsp; 序小端字节序验证

空结构体:对于空结构体,就是只有结构体这个模子,但里面却没有元素的结构体. 例: typedef struct student { }std: 这种空结构体的模子占一个字节,sizeof(std)=1. 柔性数组: 结构体中最后一个元素可以是一个大小未知的数组,称作柔性数组成员,规定柔性数组前面至少有一个元素. typedef struct student { int i; char arr[];     //柔性数组成员 }std: sizeof(std)=4; sizeof求取该结构体大小是

大端字节序和小端字节序之分

我们知道关于字节序有大端和小端之分.一般来说,Inter的处理器使用的是小端(little Indian),Moto的处理器使用的是大端.大端和小端的区别在于,内存对于变量的存放规则不同.小端存储模式是低位放在低地址,高位存放在高地址.而大端则相反. 简单示例如下: a=0x11223344: 低                                                             高 地址由低到高--------------------> 小端字节序    

【原创】大端和小端字节序的细节

这已经是一个被说得很烂的一个话题了,今天我想在这一篇文章补充一些细节上的东西,供备忘! 在看这篇文章之前,请先仔细看下链接这篇博文,关于字节序说得很详细!http://blog.chinaunix.net/uid-25367385-id-188322.html 在今天,碰到了这样一条语句: #define get16bits(d) (*((const uint16_t *) (d))) 很明显宏参数d必须是一个指针,它可以是位数大于等于16位的类型指针,short int.long int,甚至

内存对齐 大端字节,序小端字节序验证

空结构体:对于空结构体,就是只有结构体这个模子,但里面却没有元素的结构体. 例: typedef struct student { }std: 这种空结构体的模子占一个字节,sizeof(std)=1. 柔性数组: 结构体中最后一个元素可以是一个大小未知的数组,称作柔性数组成员,规定柔性数组前面至少有一个元素. typedef struct student { int i; char arr[];     //柔性数组成员 }std: sizeof(std)=4; sizeof求取该结构体大小是

小端字节序和大端字节序

端模式分为:小端字节序和大端字节序,也就是字节在内存中的顺序. 需要注意的是,对于数据来说,高字节是指最高位字节,即左边第一位! 小端字节序:低字节存于内存低地址:高字节存于内存高地址.如一个long型数据0x12345678 0x0029f458 0x78 0x0029f459 0x56 0x0029f45a 0x34 0x0029f45b 0x12 在以上数据存放于内存中的表现形式中,0x0029f458 < 0x0029f459 < 0x0029f45a < 0x0029f45b,

大端字节序和小端字节序

不同的系统,对于存储的内容的高字节,可能分别放在物理地址的高地址或低地址. 我们可以简单地将内存看成是线性的连续地址. 对于高字节存放在低地址的字节序,称为大端字节序.网络字节序就是大端字节序. 反之,高字节存放在低地址的字节序,称为小端字节序. bool isLittleEndian() { int i = 1; char *a = (char*)&i; return *a;// 若true 小端字节序:反之 大端字节序 } 例子: #include <iostream> using

大端、小端字节序

int var=0x10203040; char by[4]; by=(char*)(&var); 则: by[0]=0x40, by[1]=0x30, by[2]=0x20, by[3]=0x10--小端,记忆规则:高高,低低. by[0]=0x10, by[1]=0x20, by[3]=0x30, by[3]=0x40--大端,记忆规则:高低,低高. 备注:大端中,数字就像字符串一样从左向右存储进内存中.网络字节序均为大端,因为在网络中,网卡先接收的字节存储进低内存,网络发送也是由内存从低到