01背包与贪心的区别

贪心法所不能解决的01背包问题即不可分割的问题
01背包问题是 考虑整体最优解

贪心策略适用的前提是:局部最优策略能导致产生全局最优解。

例题分析编辑
例题1、
[0-1背包问题]有一个背包,背包容量是M=150。有7个物品,物品不可以分割成任意大小。
要求尽可能让装入背包中的物品总价值最大,但不能超过总容量。
物品 A B C D E F G
重量 35kg 30kg 6kg 50kg 40kg 10kg 25kg
价值 10$ 40$ 30$ 50$ 35$ 40$ 30$
分析:
目标函数:∑pi最大
约束条件是装入的物品总重量不超过背包容量:∑wi<=M(M=150)
⑴根据贪心的策略,每次挑选价值最大的物品装入背包,得到的结果是否最优?
⑵每次挑选所占重量最小的物品装入是否能得到最优解?
⑶每次选取单位重量价值最大的物品,成为解本题的策略。
值得注意的是,贪心算法并不是完全不可以使用,贪心策略一旦经过证明成立后,它就是一种高效的算法。
贪心算法还是很常见的算法之一,这是由于它简单易行,构造贪心策略不是很困难。
可惜的是,它需要证明后才能真正运用到题目的算法中。
一般来说,贪心算法的证明围绕着:整个问题的最优解一定由在贪心策略中存在的子问题的最优解得来的。
对于例题中的3种贪心策略,都是无法成立(无法被证明)的,解释如下:
⑴贪心策略:选取价值最大者。
反例:
W=30
物品:A B C
重量:28 12 12
价值:30 20 20
根据策略,首先选取物品A,接下来就无法再选取了,可是,选取B、C则更好。
⑵贪心策略:选取重量最小。它的反例与第一种策略的反例差不多。
⑶贪心策略:选取单位重量价值最大的物品。
反例:
W=30
物品:A B C
重量:28 20 10
价值:28 20 10
根据策略,三种物品单位重量价值一样,程序无法依据现有策略作出判断,如果选择A,则答案错误。
【注意:如果物品可以分割为任意大小,那么策略3可得最优解】
对于选取单位重量价值最大的物品这个策略,可以再加一条优化的规则:对于单位重量价值一样的,则优先选择重量小的!这样,上面的反例就解决了。
但是,如果题目是如下所示,这个策略就也不行了。
W=40
物品:A B C
重量:25 20 15
价值:25 20 15
附:本题是个DP问题,用贪心法并不一定可以求得最优解,以后了解了动态规划算法后本题就有了新的解法。

时间: 2025-01-03 00:09:21

01背包与贪心的区别的相关文章

【动态规划】背包问题(一) 01背包 完全背包 多重背包

一.01背包 有N件物品和一个容量为V的背包.第i件物品的价格(即体积,下同)是w[i],价值是c[i].求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大. 这是最基础的背包问题,总的来说就是:选还是不选,这是个问题<( ̄ˇ ̄)/ 相当于用f[i][j]表示前i个背包装入容量为v的背包中所可以获得的最大价值. 对于一个物品,只有两种情况 情况一: 第i件不放进去,这时所得价值为:f[i-1][v] 情况二: 第i件放进去,这时所得价值为:f[i-1][v-c[i]]+w

0-1背包的动态规划算法,部分背包的贪心算法和DP算法------算法导论

一.问题描述 0-1背包问题,部分背包问题.分别实现0-1背包的DP算法,部分背包的贪心算法和DP算法. 二.算法原理 (1)0-1背包的DP算法 0-1背包问题:有n件物品和一个容量为W的背包.第i件物品的重量是w[i],价值是v[i].求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大.其中每种物品只有一件,可以选择放或者不放. 最优子结构性质:对于0-1问题,考虑重量至多W的最值钱的一包东西.如果去掉其中一个物品j,余下的必是除j以外的n-1件物品中,可以带走的重量

饭卡(01背包+贪心)

电子科大本部食堂的饭卡有一种很诡异的设计,即在购买之前判断余额.如果购买一个商品之前,卡上的剩余金额大于或等于5元,就一定可以购买成功(即使购买后卡上余额为负),否则无法购买(即使金额足够).所以大家都希望尽量使卡上的余额最少. 某天,食堂中有n种菜出售,每种菜可购买一次.已知每种菜的价格以及卡上的余额,问最少可使卡上的余额为多少. Input多组数据.对于每组数据: 第一行为正整数n,表示菜的数量.n<=1000. 第二行包括n个正整数,表示每种菜的价格.价格不超过50. 第三行包括一个正整数

HDU -2546饭卡(01背包+贪心)

这道题有个小小的坎,就是低于5块不能选,大于5块,可以任意选,所以就在初始条件判断一下剩余钱数,然后如果大于5的话,这时候就要用到贪心的思想,只要大于等于5,先找最大的那个,然后剩下的再去用背包去选择,这样的结果一定是最优的.因为最大的那个一定会被选中,剩下多少钱都无所谓,用背包可以获得剩下的最优解,所以最后也是最优解 代码如下 1 #include <cstdio> 2 #include <cstring> 3 #include <algorithm> 4 using

TopCoder SRM502 Div1 500 贪心 01背包

原文链接https://www.cnblogs.com/zhouzhendong/p/SRM502-500.html SRM502 Div1 500 好题. 首先,如果已经确定了解决所有问题的优先级,只需要对于每一个问题是否被解决做出决策,那么显然直接 01 背包就好了. 事实上,我们是可以贪心地确定两个问题的优先程度的. 对于两个问题,假设分别为 a 和 b,则先做 a 再紧接着做 b 和先做 b 再紧接着做 a 的收益之差为 \[ \begin{eqnarray*} &&(-dec_a

CodeforcesF2. Complete the Projects (hard version) (贪心+贪心+01背包)

题目链接:传送门 思路: 对于对rating有提升的项目,肯定做越多越好,所以把$b_{i} >= 0$的项目按rating要求从小到大贪心地都做掉,得到最高的rating记为r. 对于剩余的$b_{i} < 0$的项目,因为r的范围很小,在6e4的亚子,可以考虑用01背包来做. 但是直接上01背包会WA,是因为不同项目选择的先后顺序会对结果有影响. 比如现在的r是5,有两个项目,(ai,bi)分别为(3,-3)和(3,-1),如果先做前面的项目,就会导致rating不够做后一个项目. 考虑任

HDU 3446 有贪心思想的01背包

Proud Merchants Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)Total Submission(s): 4500    Accepted Submission(s): 1873 Problem Description Recently, iSea went to an ancient country. For such a long time, it was

饭卡 01背包 + 贪心

饭卡 电子科大本部食堂的饭卡有一种很诡异的设计,即在购买之前判断余额.如果购买一个商品之前,卡上的剩余金额大于或等于5元,就一定可以购买成功(即使购买后卡上余额为负),否则无法购买(即使金额足够).所以大家都希望尽量使卡上的余额最少. 某天,食堂中有n种菜出售,每种菜可购买一次.已知每种菜的价格以及卡上的余额,问最少可使卡上的余额为多少. 多组数据.对于每组数据: 第一行为正整数n,表示菜的数量.n<=1000. 第二行包括n个正整数,表示每种菜的价格.价格不超过50. 第三行包括一个正整数m,

Proud Merchants HDU - 3466 01背包&amp;&amp;贪心

最近,我去了一个古老的国家.在很长一段时间里,它是世界上最富有.最强大的王国.结果,这个国家的人民仍然非常自豪,即使他们的国家不再那么富有.商人是最典型的,他们每个人只卖一件商品,价格是Pi,但是如果你的钱少于Qi,他们就会拒绝和你交易,而我评估每件商品的价值Vi.如果他有M单位的钱,iSea能得到的最大值是多少? 输入 在输入中有几个测试用例.每个测试用例以两个整数N M(1≤N≤500,1≤M≤5000)开始,表示项目编号和初始资金.接着N行,每一行包含3个数字Pi, Qi和Vi(1≤Pi≤