hive压缩之小文件合并

Hive压缩之二 小文件合并

调研背景

当Hive输入由很多个小文件组成,由于每个小文件都会启动一个map任务,如果文件过小,以至于map任务启动和初始化的时间大于逻辑处理的时间,会造成资源浪费,甚至OOM。为此,当我们启动一个任务,发现输入数据量小但任务数量多时,需要注意在Map前端进行输入合并。当然,在我们向一个表写数据时,也需要注意输出文件大小。

输入合并

合并输入小文件,减少map数?

主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小。

举例:

a)    假设input目录下有1个文件a,大小为780M,那么hadoop会将该文件a分隔成7个块(6个128m的块和1个12m的块),从而产生7个map数

b)   假设input目录下有3个文件a,b,c,大小分别为10m,20m,130m,那么hadoop会分隔成4个块(10m,20m,128m,2m),从而产生4个map数即,如果文件大于块大小(128m),那么会拆分,如果小于块大小,则把该文件当成一个块。

假设一个SQL任务:

Select count(1) from mb_test where date = ‘2015-01-19’  and hour = 0;

该任务的/user/hive/warehouse/naga.db/mb_test/date=2015-01-19/hour=0共有10个文件,每个文件大小为3.15M,远小于128M的小文件,总大小31.5M,正常执行会用10个map任务。

而实际上只生成了一个map任务

set mapred.max.split.size=100000000;

set mapred.min.split.size.per.node=100000000;

setmapred.min.split.size.per.rack=100000000;

sethive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;

结论是此处的的合并是逻辑上的合并,而Hive默认已经做了输入合并,我们不需要作过多的设置。

输出合并

合并输出小文件。输出时,若是太多小文件,每个小文件会与一个block进行对应,而block存在的意义是为了方便在namenode中存储,那么过多的block将会充斥namenode的表中,待集群规模增大和运行次数增大,那么维护block的表将会过大,严重降低namenode性能。

set hive.merge.mapfiles = true #在Map-only的任务结束时合并小文件

set hive.merge.mapredfiles = true #在Map-Reduce的任务结束时合并小文件

set hive.merge.size.per.task = 256*1000*1000 #合并文件的大小

set hive.merge.smallfiles.avgsize=16000000 #当输出文件的平均大小小于该值时,启动一个独立的map-reduce任务进行文件merge

我们执行以下语句:

insert overwrite table naga.mb_time selectticks string,starttime bigint, endtime bigint from naga.mb_pageinfo where  starttime%10 = 7;

该语句将大表通过设定条件starttime%10 = 7选择三个字段存入小表中,观察执行的map数量和目标文件个数:

如下图,在整个运算job中会开启两个map

而只产生了一个目标文件/user/hive/warehouse/naga.db/mb_time/000000_0,

从上图中看出我们的设置生效,不会产生两个更小的文件

几个参数指标


hive.merge.mapfiles


是否在Map-only的任务结束时合并小文件


true


true


Hive无


hive.merge.mapredfiles


是否在Map-Reduce的任务结束时合并小文件


false


true


Hive无


hive.merge.size.per.task


合并目标文件的大小


256000000


256000000


Hive无


hive.merge.smallfiles.avgsize


当输出文件的平均大小小于该值时,启动一个独立的map-reduce任务进行文件merge


16000000


5000000


Hive无

我们要做的就是设置hive.merge.smallfiles.avgsize , 这里建议设置为5000000 = 5M , 即当输出文件的平均大小小于该值时,启动一个独立的map-reduce任务进行文件merge

时间: 2024-11-06 23:38:48

hive压缩之小文件合并的相关文章

Hive merge(小文件合并)

当Hive的输入由很多个小文件组成时,如果不涉及文件合并的话,那么每个小文件都会启动一个map task. 如果文件过小,以至于map任务启动和初始化的时间大于逻辑处理的时间,会造成资源浪费,甚至发生OutOfMemoryError错误. 因此,当我们启动一个任务时,如果发现输入数据量小但任务数量多时,需要注意在Map前端进行输入小文件合并操作. 同理,向一个表写数据时,注意观察reduce数量,注意输出文件大小. 1. Map输入小文件合并 #每个Map处理的最大输入文件大小(256MB) s

hive小文件合并设置参数

Hive的后端存储是HDFS,它对大文件的处理是非常高效的,如果合理配置文件系统的块大小,NameNode可以支持很大的数据量.但是在数据仓库中,越是上层的表其汇总程度就越高,数据量也就越小.而且这些表通常会按日期进行分区,随着时间的推移,HDFS的文件数目就会逐渐增加. 小文件带来的问题 关于这个问题的阐述可以读一读Cloudera的这篇文章.简单来说,HDFS的文件元信息,包括位置.大小.分块信息等,都是保存在NameNode的内存中的.每个对象大约占用150个字节,因此一千万个文件及分块就

Hive优化之小文件问题及其解决方案

小文件是如何产生的 1.动态分区插入数据,产生大量的小文件,从而导致map数量剧增. 2.reduce数量越多,小文件也越多(reduce的个数和输出文件是对应的). 3.数据源本身就包含大量的小文件. 小文件问题的影响 1.从Hive的角度看,小文件会开很多map,一个map开一个JVM去执行,所以这些任务的初始化,启动,执行会浪费大量的资源,严重影响性能. 2.在HDFS中,每个小文件对象约占150byte,如果小文件过多会占用大量内存.这样NameNode内存容量严重制约了集群的扩展. 小

MR案例:小文件合并SequeceFile

SequeceFile是Hadoop API提供的一种二进制文件支持.这种二进制文件直接将<key, value>对序列化到文件中.可以使用这种文件对小文件合并,即将文件名作为key,文件内容作为value序列化到大文件中.这种文件格式有以下好处: 1). 支持压缩,且可定制为基于Record或Block压缩(Block级压缩性能较优)2). 本地化任务支持:因为文件可以被切分,因此MapReduce任务时数据的本地化情况应该是非常好的.3). 难度低:因为是Hadoop框架提供的API,业务

HDFS小文件合并问题的优化:copyMerge的改进

1.问题分析 用fsck命令统计 查看HDFS上在某一天日志的大小,分块情况以及平均的块大小,即 [[email protected] jar]$ hadoop fsck /wcc/da/kafka/report/2015-01-11 DEPRECATED: Use of this script to execute hdfs command is deprecated. Instead use the hdfs command for it. 15/01/13 18:57:23 WARN ut

HDFS操作及小文件合并

小文件合并是针对文件上传到HDFS之前 这些文件夹里面都是小文件 参考代码 package com.gong.hadoop2; import java.io.IOException; import java.net.URI; import java.net.URISyntaxException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FSDataInputStream; import or

将小文件合并大文件上传

自定义方法将本地多个小文件合并成一个大文件上传到HDFS上. package test; import java.net.URI; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FSDataInputStream; import org.apache.hadoop.fs.FSDataOutputStream; import org.apache.hadoop.fs.FileStatus; impo

hadoop小文件合并

1.背景 在实际项目中,输入数据往往是由许多小文件组成,这里的小文件是指小于HDFS系统Block大小的文件(默认128M), 然而每一个存储在HDFS中的文件.目录和块都映射为一个对象,存储在NameNode服务器内存中,通常占用150个字节. 如果有1千万个文件,就需要消耗大约3G的内存空间.如果是10亿个文件呢,简直不可想象.所以在项目开始前, 我们选择一种适合的方案来解决本项目的小文件问题 2.介绍 本地 D:\data目录下有 2012-09-17 至 2012-09-23 一共7天的

hadoop 将HDFS上多个小文件合并到SequenceFile里

背景:hdfs上的文件最好和hdfs的块大小的N倍.如果文件太小,浪费namnode的元数据存储空间以及内存,如果文件分块不合理也会影响mapreduce中map的效率. 本例中将小文件的文件名作为key,其内容作为value生成SequenceFile 1.生成文件 //将目标目录的所有文件以文件名为key,内容为value放入SequenceFile中 //第一个参数是需要打包的目录,第二个参数生成的文件路径和名称 private static void combineToSequenceF