BP神经网络的数据分类——语音特征信号分类

BP网络的训练过程包括以下几个步骤:

步骤一:网络初始化。

步骤二:隐含层输出计算。

步骤三:输出层输出计算。

步骤四:误差计算。

步骤五:权值更新。

步骤六:阈值更新。

步骤七:判断算法迭代是否结束,若没有结束,返回步骤二。

语音特征信号识别:

基于BP神经网络的语音特征信号分类算法建模包括BP神经网络构建、BP神经网络训练和BP神经网络分类三步,算法流程如图1-4所示:

时间: 2024-10-06 00:15:18

BP神经网络的数据分类——语音特征信号分类的相关文章

题外:分类篇(音乐风格分类)基于BP神经网络

语音特征参数MFCC的提取及识别 (2012-09-07 20:24:03) 转载▼ 耳蜗实质上相当于一个滤波器组,耳蜗的滤波作用是在对数频率尺度上进行的,在1000HZ下,人耳的感知能力与频率成线性关系:而在1000HZ以上,人耳的感知能力与频率不构成线性关系,而更偏向于对数关系,这就使得人耳对低频信号比高频信号更敏感.Mel频率的提出是为了方便人耳对不同频率语音的感知特性的研究.频率与Mel频率的转换公式为: MFCC在一定程度上模拟了人耳对语音的处理特点,应用了人耳听觉感知方面的研究成果,

简单易学的机器学习算法——神经网络之BP神经网络

一.BP神经网络的概念 BP神经网络是一种多层的前馈神经网络,其基本的特点是:信号是前向传播的,而误差是反向传播的.详细来说.对于例如以下的仅仅含一个隐层的神经网络模型: (三层BP神经网络模型) BP神经网络的过程主要分为两个阶段.第一阶段是信号的前向传播,从输入层经过隐含层.最后到达输出层:第二阶段是误差的反向传播,从输出层到隐含层.最后到输入层,依次调节隐含层到输出层的权重和偏置,输入层到隐含层的权重和偏置. 二.BP神经网络的流程 在知道了BP神经网络的特点后,我们须要根据信号的前向传播

转载——关于bp神经网络

一.BP神经网络的概念 BP神经网络是一种多层的前馈神经网络,其主要的特点是:信号是前向传播的,而误差是反向传播的.具体来说,对于如下的只含一个隐层的神经网络模型: (三层BP神经网络模型) BP神经网络的过程主要分为两个阶段,第一阶段是信号的前向传播,从输入层经过隐含层,最后到达输出层:第二阶段是误差的反向传播,从输出层到隐含层,最后到输入层,依次调节隐含层到输出层的权重和偏置,输入层到隐含层的权重和偏置. 二.BP神经网络的流程 在知道了BP神经网络的特点后,我们需要依据信号的前向传播和误差

第一章 BP神经网络

[MATAB神经网络30个案例分析].史峰.扫描版[www.minxue.net] BP神经网络是一种多层前馈神经网络,信号向前传播,误差反向传播 拓扑结构图 训练过程包括以下步骤 网络初始化:确定网络输入层节点数,隐含层节点数,输出层节点数:初始化权值.阈值, 计算隐含层输出: 输出层计算: 误差计算 权值更新[重点]: 阈值更新: 判断算法迭代是否结束: 11.2 案例:语音特征信号识别:   1.2 模型建立 1.3 MATLAB实现 1.3.1 归一化方法                

【机器学习】BP神经网络实现手写数字识别

最近用python写了一个实现手写数字识别的BP神经网络,BP的推导到处都是,但是一动手才知道,会理论推导跟实现它是两回事.关于BP神经网络的实现网上有一些代码,可惜或多或少都有各种问题,在下手写了一份,连带着一些关于性能的分析也写在下面,希望对大家有所帮助. 本博文不含理论推导,如对BP的理论推导感兴趣百度即可,或参考<模式识别>. 一.数据库 程序使用的数据库是mnist手写数字数据库,这个数据库我有两个版本,一个是别人做好的.mat格式,训练数据有60000条,每条是一个784维的向量,

BP神经网络基本原理

2.1 BP神经网络基本原理 BP网络模型处理信息的基本原理是:输入信号Xi通过中间节点(隐层点)作用于输出节点,经过非线形变换,产生输出信号Yk,网络训练的每一个样本包含输入向量X和期望输出量t,网络输出值Y与期望输出值t之间的偏差,通过调整输入节点与隐层节点的联接强度取值Wij和隐层节点与输出节点之间的联接强度Tjk以及阈值,使误差沿梯度方向下降,经过重复学习训练,确定与最小误差相相应的网络參数(权值和阈值),训练即告停止.此时经过训练的神经网络即能对相似样本的输入信息,自行处理输出误差最小

BP神经网络原理及C++实战

前一段时间做了一个数字识别的小系统,基于BP神经网络算法的,用MFC做的交互.在实现过程中也试着去找一些源码,总体上来讲,这些源码的可移植性都不好,多数将交互部分和核心算法代码杂糅在一起,这样不仅代码阅读困难,而且重要的是核心算法不具备可移植性.设计模式,设计模式的重要性啊!于是自己将BP神经网络的核心算法用标准C++实现,这样可移植性就有保证的,然后在核心算法上实现基于不同GUI库的交互(MFC,QT)是能很快的搭建好系统的.下面边介绍BP算法的原理(请看<数字图像处理与机器视觉>非常适合做

ECG信号读取,检测QRS,P,T 波(基于小波去噪与检测),基于BP神经网络的身份识别

这学期选了神经网络的课程,最后作业是处理ECG信号,并利用神经网络进行识别. 1  ECG介绍与读取ECG信号 1)ECG介绍  具体ECG背景应用就不介绍了,大家可以参考百度 谷歌.只是简单说下ECG的结构: 一个完整周期的ECG信号有 QRS P T 波组成,不同的人对应不用的波形,同一个人在不同的阶段波形也不同.我们需要根据各个波形的特点,提取出相应的特征,对不同的人进行身份识别. 2)ECG信号读取 首先需要到MIT-BIH数据库中下载ECG信号,具体的下载地址与程序读取内容介绍可以参考

BP神经网络及matlab实现

本文主要内容包括: (1) 介绍神经网络基本原理,(2) AForge.NET实现前向神经网络的方法,(3) Matlab实现前向神经网络的方法 . 第0节.引例  本文以Fisher的Iris数据集作为神经网络程序的测试数据集.Iris数据集可以在http://en.wikipedia.org/wiki/Iris_flower_data_set  找到.这里简要介绍一下Iris数据集: 有一批Iris花,已知这批Iris花可分为3个品种,现需要对其进行分类.不同品种的Iris花的花萼长度.花萼