高斯消元-bzoj1013-球形空间产生器

This article is made by Jason-Cow.
Welcome to reprint.
But please post the writer‘s address.

http://www.cnblogs.com/JasonCow/

推方程设n位坐标视为方程组的n个未知数

然后化为一般式。

#include <cmath>
#include <cstdio>
#include <algorithm>
using namespace std;
typedef double db;
db a[15][15],b[15];
bool Guass(int n);
bool work();
int main(){return work();}

bool work(){
  int n;scanf("%d",&n);
  for(int i=1;i<=n;i++)scanf("%lf",&b[i]);
  for(int i=1;i<=n;i++)
    for(int j=1;j<=n;j++){
      db x;scanf("%lf",&x);
      a[i][j]+=2*(b[j]-x);
      a[i][n+1]+=(b[j]*b[j])-(x*x);
    }
  return Guass(n);
}

bool Guass(int n){
  for(int i=1;i<=n;i++){
    db Max=-1e9;int I=i;
    for(int j=i;j<=n;j++)if(fabs(a[i][j])>Max)Max=fabs(a[j][i]),I=j;
    if(I!=i)for(int j=1;j<=n+1;j++)swap(a[i][j],a[I][j]);
    db t=a[i][i];
    for(int j=i;j<=n+1;j++)a[i][j]/=t;
    for(int j=1;j<=n;j++)
      if(i!=j){
    db t=a[j][i];
    for(int k=1;k<=n+1;k++)a[j][k]-=t*a[i][k];
      }
  }
  for(int i=1;i<n;i++)printf("%.3lf ",a[i][n+1]);printf("%.3lf\n",a[n][n+1]);
  return 0;
}
时间: 2024-10-31 17:47:01

高斯消元-bzoj1013-球形空间产生器的相关文章

[bzoj1013][JSOI2008]球形空间产生器sphere-题解[高斯消元]

Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器. Input 第一行是一个整数n(1<=N=10).接下来的n+1行,每行有n个实数,表示球面上一点的n维坐标.每一个实数精确到小数点后6位,且其绝对值都不超过20000. Output 有且只有一行,依次给出球心的n维坐标(n个实数),两个实数之间用一个空格隔开.每个实数精确到

[BZOJ1013] [JSOI2008] 球形空间产生器sphere (高斯消元)

Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器. Input 第一行是一个整数n(1<=N=10).接下来的n+1行,每行有n个实数,表示球面上一点的n维坐标.每一个实数精确到小数点后6位,且其绝对值都不超过20000. Output 有且只有一行,依次给出球心的n维坐标(n个实数),两个实数之间用一个空格隔开.每个实数精确到

[JSOI2008][BZOJ1013] 球形空间产生器 - 高斯消元

Description 有一个球形空间产生器能够在 n 维空间中产生一个坚硬的球体.现在,你被困在了这个 n 维球体中,你只知道球面上 n+1 个点的坐标,你需要以最快的速度确定这个 n 维球体的球心坐标,以便于摧毁这个球形空间产生器. Input & Output Input 第一行是一个整数 n(1<=N=10) .接下来的 n+1 行,每行有 n 个实数,表示球面上一点的 n 维坐标.每一个实数精确到小数点后 6 位,且其绝对值都不超过20000. Output 有且只有一行,依次给出

BZOJ 1013 [JSOI2008]球形空间产生器sphere 【高斯消元】

Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器. HINT 1<=n<=10 提示:给出两个定义:1. 球心:到球面上任意一点距离都相等的点.2. 距离:设两个n为空间上的点A, B的坐标为(a1, a2, …, an), (b1, b2, …, bn),则AB的距离定义为:dist = sqrt( (a1-b1)^2 +

bzoj 1013 [JSOI2008]球形空间产生器sphere(高斯消元)

1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3584  Solved: 1863[Submit][Status][Discuss] Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器. Input 第一行是一个整数,n.接

【高斯消元】BZOJ 1013: [JSOI2008]球形空间产生器sphere

Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器. Input 第一行是一个整数,n.接下来的n+1行,每行有n个实数,表示球面上一点的n维坐标.每一个实数精确到小数点后6位,且其绝对值都不超过20000. Output 有且只有一行,依次给出球心的n维坐标(n个实数),两个实数之间用一个空格隔开.每个实数精确到小数点后3位.数

【BZOJ】1013: [JSOI2008]球形空间产生器sphere(高斯消元)

http://www.lydsy.com/JudgeOnline/problem.php?id=1013 只要列出方程组就能套高斯来解了. 显然距离相等,所以开不开平方都无所谓. b表示圆心,可列 sigma((x[i][j]-b[j])^2)=sigma((x[i+1][j]-b[j])^2) 化简得 sigma(2*b[j]*(x[i+1][j]-x[i][j]))=sigma(x[i+1][j]^2-x[i][j]^2) 然后就得到n个等式,而且题目保证有解,就套高斯就行了. 第一次学高斯

HYSBZ 1013: [JSOI2008]球形空间产生器sphere(高斯消元啊 模板)

题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1013 Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器. Input 第一行是一个整数,n.接下来的n+1行,每行有n个实数,表示球面上一点的n维坐标.每一个实数精确到小数点后6位,且其绝对值都不超过20000. Out

【高斯消元】【JSOI 2008】【bzoj 1013】球形空间产生器sphere

1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec Memory Limit: 162 MB Submit: 3211 Solved: 1685 Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器. Input 第一行是一个整数,n.接下来的n+1行,每行有n个实数,表示球面上一点的n维

lydsy1013: [JSOI2008]球形空间产生器sphere 高斯消元

题链:http://www.lydsy.com/JudgeOnline/problem.php?id=1013 1013: [JSOI2008]球形空间产生器sphere 时间限制: 1 Sec  内存限制: 162 MB 提交: 3063  解决: 1607 [提交][][] 题目描述 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器. 输入 第一行