Python进行数据分析(二)初步学习2

# -*- coding: utf-8 -*-
"""
Created on Thu Sep 21 12:24:37 2017

@author: Douzi
"""

import pandas as pd

# 用户信息
unames = [‘user_id‘, ‘gender‘, ‘age‘, ‘occupation‘, ‘zip‘]
users = pd.read_table(‘ch02/movielens/users.dat‘, sep=‘::‘, header=None, names=unames, engine=‘python‘)

# 电影排名
rnames = [‘user_id‘, ‘movie_id‘, ‘rating‘, ‘timestamp‘]
ratings = pd.read_table(‘ch02/movielens/ratings.dat‘, sep=‘::‘, header=None, names=rnames,engine=‘python‘)

# 电影信息
mnames = [‘movie_id‘, ‘title‘, ‘genres‘]
movies = pd.read_table(‘ch02/movielens/movies.dat‘, sep=‘::‘, header=None, names=mnames, engine=‘python‘)

users[:5]
Out[113]:
   user_id gender  age  occupation    zip
0        1      F    1          10  48067
1        2      M   56          16  70072
2        3      M   25          15  55117
3        4      M   45           7  02460
4        5      M   25          20  55455

ratings[:5]
Out[114]:
   user_id  movie_id  rating  timestamp
0        1      1193       5  978300760
1        1       661       3  978302109
2        1       914       3  978301968
3        1      3408       4  978300275
4        1      2355       5  978824291

movies[:5]
Out[115]:
   movie_id                               title                        genres
0         1                    Toy Story (1995)   Animation|Children‘s|Comedy
1         2                      Jumanji (1995)  Adventure|Children‘s|Fantasy
2         3             Grumpier Old Men (1995)                Comedy|Romance
3         4            Waiting to Exhale (1995)                  Comedy|Drama
4         5  Father of the Bride Part II (1995)                        Comedy
时间: 2024-11-07 23:24:51

Python进行数据分析(二)初步学习2的相关文章

利用python进行数据分析——(一)库的学习

总结一下自己对python常用包:Numpy,Pandas,Matplotlib,Scipy,Scikit-learn 一. Numpy: 标准安装的Python中用列表(list)保存一组值,可以用来当作数组使用,不过由于列表的元素可以是任何对象,因此列表中所保存的是对象的指 针.这样为了保存一个简单的[1,2,3],需要有3个指针和三个整数对象.对于数值运算来说这种结构显然比较浪费内存和CPU计算时间. 此外Python还提供了一个array模块,array对象和列表不同,它直接保存数值,和

学习编程之Python篇(二)

学习编程与学习踢球.学习演奏并无差别,最佳方式就是不断练习,所以我们鼓励你敲些代码,看看会发生什么,如果这些代码头一次不起作用,没关系,再来,看看你能否把它们纠正过来. 首先是一个简单的快速入门程序,让我们通过了解这个程序的细节,来熟悉Python. 第一项任务:给定半径,计算一个圆的周长和面积. 程序分解: 1.  提示用户输入半径: 2.  应用数学公式,根据获得的半径,得出周长和面积: 3.  输出结果. 代码1.1 运行程序的最简单方法是在IDLE编辑器里打开它,然后选择Run->Run

Jquery Easy UI初步学习(二)datagrid的使用

第一篇学的是做一个管理的外框,接着就是数据datagrid绑定了,这里我用asp.net mvc3来做的,主要就是熟悉属性.方法. 打开easyui的demo 就可以看到如下一段代码: 和上篇一样class="easyui-datagrid", data-options="...",这是一样的,其他我在网上查了查,并做了整理 DataGrid 属性 参数名 类型 描述 默认值 title string Datagrid面板的标题 null iconCls strin

PYTHON学习(三)之利用python进行数据分析(1)---准备工作

学习一门语言就是不断实践,python是目前用于数据分析最流行的语言,我最近买了本书<利用python进行数据分析>(Wes McKinney著),还去图书馆借了本<Python数据分析基础教程--NumPy学习指南>(第二版),准备将python数据分析工具的门给入了哈哈,闲话少说,直接切入正题. 首先<利用python进行数据分析>此书的译者强烈建议计算机环境的配置最好与书上的一致,所以我找了半天书上要求用的安装包 第一,安装32位的EPDFree(书上的版本就是3

利用 Python 进行数据分析(二)尝试处理一份 JSON 数据并生成条形图

一.JSON 数据准备 首先准备一份 JSON 数据,这份数据共有 3560 条内容,每条内容结构如下: 本示例主要是以 tz(timezone 时区) 这一字段的值,分析这份数据里时区的分布情况. 二.将 JSON 数据转换成 Python 字典 代码如下: 三.统计 tz 值分布情况,以“时区:总数”的形式生成统计结果 要想达到这一目的,需要先将 records 转换成 DataFrame,DataFrame 是 Pandas 里最重要的数据结构,它可以将数据以表格的形式表示:然后用 val

《利用python进行数据分析》读书笔记 --第一、二章 准备与例子

http://www.cnblogs.com/batteryhp/p/4868348.html 第一章 准备工作 今天开始码这本书--<利用python进行数据分析>.R和python都得会用才行,这是码这本书的原因.首先按照书上说的进行安装,google下载了epd_free-7.3-1-win-x86.msi,译者建议按照作者的版本安装,EPDFree包括了Numpy,Scipy,matplotlib,Chaco,IPython.这里的pandas需要自己安装,对应版本为pandas-0.

利用 Python 进行数据分析(十二)pandas:数据合并

pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法combine_first()方法:合并重叠数据. pandas.merge()方法:数据库风格的合并 例如,通过merge()方法将两个DataFrame合并: on='name'的意思是将name列当作键: 默认情况下,merge做的是内连接(inner),即键的交集. 其他方式还有左连接(lef

python的数据分析的学习方法

python数据分析的要求并不是软件开发的要求,确实,对于一门工具,不同目的的使用者,需要的技能是不一样的,比如刀这个工具,屠夫用它是杀猪的,厨师用它是切菜的,军人用它是保家卫国的,客人用它是切牛排的,每个人用的方式都不一样,对于刀的掌握方法都有特定的要求. python数据分析,就如同学excel做数据分析一样,都是从了解python如何打开使用,如何在里面处理数据,如何筛选数据,如何统计分析,如何图表展示.python只是工具,关键还是处理问题的思维方法.我们学习python的目的不是为了写

利用python进行数据分析--(阅读笔记一)

以此记录阅读和学习<利用Python进行数据分析>这本书中的觉得重要的点! 第一章:准备工作 1.一组新闻文章可以被处理为一张词频表,这张词频表可以用于情感分析. 2.大多数软件是由两部分代码组成:少量需要占用大部分执行时间的代码,以及大量不经常执行的“粘合剂代码”. cython已经成为python领域中创建编译型扩展以及对接c/c++代码的一大途径. 3.在那些要求延迟性非常小的应用程序中(例如高频交易系统),为了尽最大可能地优化性能,耗费时间使用诸如C++这样更低级.更低生产率的语言进行

Python进行数据分析之一:相关Package的安装

一.为什么要使用Python进行数据分析? python拥有一个巨大的活跃的科学计算社区,拥有不断改良的库,能够轻松的集成C,C++,Fortran代码(Cython项目),可以同时用于研究和原型的构建以及生产系统的构建. 二.Python的优势与劣势: 1.Python是一种解释型语言,运行速度比编译型数据慢. 2.由于python有一个全局解释器锁(GIL),防止解释器同时执行多条python字节码,所以python不适用于高并发.多线程的应用程序. 三.使用Python进行数据分析常用的扩