Take the number 192 and multiply it by each of 1, 2, and 3:
192 × 1 = 192
192 × 2 = 384
192 × 3 = 576
By concatenating each product we get the 1 to 9 pandigital, 192384576. We will call 192384576 the concatenated product of 192 and (1,2,3)
The same can be achieved by starting with 9 and multiplying by 1, 2, 3, 4, and 5, giving the pandigital, 918273645, which is the concatenated product of 9 and (1,2,3,4,5).
What is the largest 1 to 9 pandigital 9-digit number that can be formed as the concatenated product of an integer with (1,2, ... , n)
where n > 1?
#include <iostream> #include <string> #include <map> using namespace std; bool pan_mul(int a, int b,int &c) { c = 0; map<int, int>mp; for (int i = 1; i <= b; i++) { int tmp = a*i; int num = tmp; int count = 0; while (tmp) { if (mp[tmp % 10] != 0) return false; mp[tmp % 10]++; tmp /= 10; count++; } if (mp[0] != 0) return false; if (i == 1) c += num; else c = c*pow(10, count) + num; } if (mp[0] != 0) return false; if (mp.size() == 10) return true; else return false; } int main() { int maxn = 0; for (int i = 1; i <= 10000; i++) { for (int j = 2; j <= 15; j++) { int c = 0; if (pan_mul(i, j, c)) { if (c > maxn) { //cout << i << " " << j << " " << c << endl; maxn = c; } } } } cout << maxn << endl; system("pause"); return 0; }
时间: 2024-11-05 16:09:50