最近看见一个要求仅使用加法减法实现二分查找的题目,百度了一下,原来要用到一个叫做斐波那契查找的的算法。查百度,是这样说的:
斐波那契查找与折半查找很相似,他是根据斐波那契序列的特点对有序表进行分割的。他要求开始表中记录的个数为某个斐波那契数小1,即n=F(k)-1;
开始将k值与第F(k-1)位置的记录进行比较(及mid=low+F(k-1)-1),比较结果也分为三种
1)相等,mid位置的元素即为所求
2)> ,low=mid+1,k-=2;说明:low=mid+1说明待查找的元素在[mid+1,hign]范围内,k-=2 说明范围[mid+1,high]内的元素个数为n-(F(k-1))= Fk-1-F(k-1)=Fk-F(k-1)-1=F(k-2)-1个,所以可以递归的应用斐波那契查找
3)< ,high=mid-1,k-=1;说明:low=mid+1说明待查找的元素在[low,mid-1]范围内,k-=1 说明范围[low,mid-1]内的元素个数为F(k-1)-1个,所以可以递归的应用斐波那契查找
大部分说明都忽略了一个条件的说明:n=F(k)-1, 表中记录的个数为某个斐波那契数小1。这是为什么呢?
我想了很久,终于发现,原因其实很简单:
是为了格式上的统一,以方便递归或者循环程序的编写。表中的数据是F(k)-1个,使用mid值进行分割又用掉一个,那么剩下F(k)-2个。正好分给两个子序列,每个子序列的个数分别是F(k-1)-1与F(k-2)-1个,格式上与之前是统一的。不然的话,每个子序列的元素个数有可能是F(k-1),F(k-1)-1,F(k-2),F(k-2)-1个,写程序会非常麻烦。
实现代码如下:
// 斐波那契查找.cpp #include "stdafx.h" #include <memory> #include <iostream> using namespace std; const int max_size=20;//斐波那契数组的长度 /*构造一个斐波那契数组*/ void Fibonacci(int * F) { F[0]=0; F[1]=1; for(int i=2;i<max_size;++i) F[i]=F[i-1]+F[i-2]; } /*定义斐波那契查找法*/ int Fibonacci_Search(int *a, int n, int key) //a为要查找的数组,n为要查找的数组长度,key为要查找的关键字 { int low=0; int high=n-1; int F[max_size]; Fibonacci(F);//构造一个斐波那契数组F int k=0; while(n>F[k]-1)//计算n位于斐波那契数列的位置 ++k; int * temp;//将数组a扩展到F[k]-1的长度 temp=new int [F[k]-1]; memcpy(temp,a,n*sizeof(int)); for(int i=n;i<F[k]-1;++i) temp[i]=a[n-1]; while(low<=high) { int mid=low+F[k-1]-1; if(key<temp[mid]) { high=mid-1; k-=1; } else if(key>temp[mid]) { low=mid+1; k-=2; } else { if(mid<n) return mid; //若相等则说明mid即为查找到的位置 else return n-1; //若mid>=n则说明是扩展的数值,返回n-1 } } delete [] temp; return -1; } int _tmain(int argc, _TCHAR* argv[]) { int a[] = {0,16,24,35,47,59,62,73,88,99}; int key=100; int index=Fibonacci_Search(a,sizeof(a)/sizeof(int),key); cout<<key<<" is located at:"<<index; system("PAUSE"); return 0; }
时间: 2024-09-27 22:27:29