SVM分类(一)SVM的八股简介

支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中[10]。
    支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力[14](或称泛化能力)。

以上是经常被有关SVM 的学术文献引用的介绍,有点八股,我来逐一分解并解释一下。

Vapnik是统计机器学习的大牛,这想必都不用说,他出版的《Statistical Learning Theory》是一本完整阐述统计机器学习思想的名著。在该书中详细的论证了统计机器学习之所以区别于传统机器学习的本质,就在于统计机器学习能够精确的给出学习效果,能够解答需要的样本数等等一系列问题。与统计机器学习的精密思维相比,传统的机器学习基本上属于摸着石头过河,用传统的机器学习方法构造分类系统完全成了一种技巧,一个人做的结果可能很好,另一个人差不多的方法做出来却很差,缺乏指导和原则。
    所谓VC维是对函数类的一种度量,可以简单的理解为问题的复杂程度,VC维越高,一个问题就越复杂。正是因为SVM关注的是VC维,后面我们可以看到,SVM解决问题的时候,和样本的维数是无关的(甚至样本是上万维的都可以,这使得SVM很适合用来解决文本分类的问题,当然,有这样的能力也因为引入了核函数)。

结构风险最小听上去文绉绉,其实说的也无非是下面这回事:
    机器学习本质上就是一种对问题真实模型的逼近(我们选择一个我们认为比较好的近似模型,这个近似模型就叫做一个假设),但毫无疑问,真实模型一定是不知道的(如果知道了,我们干吗还要机器学习?直接用真实模型解决问题不就可以了?对吧,哈哈)既然真实模型不知道,那么我们选择的假设与问题真实解之间究竟有多大差距,我们就没法得知。比如说我们认为宇宙诞生于150亿年前的一场大爆炸,这个假设能够描述很多我们观察到的现象,但它与真实的宇宙模型之间还相差多少?谁也说不清,因为我们压根就不知道真实的宇宙模型到底是什么。
    这个与问题真实解之间的误差,就叫做风险(更严格的说,误差的累积叫做风险)。我们选择了一个假设之后(更直观点说,我们得到了一个分类器以后), 真实误差无从得知,但我们可以用某些可以掌握的量来逼近它。最直观的想法就是使用分类器在样本数据上的分类的结果与真实结果(因为样本是已经标注过的数据,是准确的数据)之间的差值来表示。这个差值叫做经验风险Remp(w)。以前的机器学习方法都把经验风险最小化作为努力的目标,但后来发现很多分类函数能够在样本集上轻易达到100%的正确率,在真实分类时却一塌糊涂(即所谓的推广能力差,或泛化能力差)。此时的情况便是选择了一个足够复杂的分类函数(它的VC维很高),能够精确的记住每一个样本,但对样本之外的数据一律分类错误。回头看看经验风险最小化原则我们就会发现,此原则适用的大前提是经验风险要确实能够逼近真实风险才行(行话叫一致),但实际上能逼近么?答案是不能,因为样本数相对于现实世界要分类的文本数来说简直九牛一毛,经验风险最小化原则只在这占很小比例的样本上做到没有误差,当然不能保证在更大比例的真实文本上也没有误差。

统计学习因此而引入了泛化误差界的概念,就是指真实风险应该由两部分内容刻画,一是经验风险,代表了分类器在给定样本上的误差;二是置信风险,代表了我们在多大程度上可以信任分类器在未知文本上分类的结果。很显然,第二部分是没有办法精确计算的,因此只能给出一个估计的区间,也使得整个误差只能计算上界,而无法计算准确的值(所以叫做泛化误差界,而不叫泛化误差)。
    置信风险与两个量有关,一是样本数量,显然给定的样本数量越大,我们的学习结果越有可能正确,此时置信风险越小;二是分类函数的VC维,显然VC维越大,推广能力越差,置信风险会变大。
    泛化误差界的公式为:R(w)≤Remp(w)+Ф(n/h)
    公式中R(w)就是真实风险,Remp(w)就是经验风险,Ф(n/h)就是置信风险。统计学习的目标从经验风险最小化变为了寻求经验风险与置信风险的和最小,即结构风险最小。
SVM正是这样一种努力最小化结构风险的算法。

SVM其他的特点就比较容易理解了。
    小样本,并不是说样本的绝对数量少(实际上,对任何算法来说,更多的样本几乎总是能带来更好的效果),而是说与问题的复杂度比起来,SVM算法要求的样本数是相对比较少的。
    非线性,是指SVM擅长应付样本数据线性不可分的情况,主要通过松弛变量(也有人叫惩罚变量)和核函数技术来实现,这一部分是SVM的精髓,以后会详细讨论。多说一句,关于文本分类这个问题究竟是不是线性可分的,尚没有定论,因此不能简单的认为它是线性可分的而作简化处理,在水落石出之前,只好先当它是线性不可分的(反正线性可分也不过是线性不可分的一种特例而已,我们向来不怕方法过于通用)。
    高维模式识别是指样本维数很高,例如文本的向量表示,如果没有经过另一系列文章(《文本分类入门》)中提到过的降维处理,出现几万维的情况很正常, 其他算法基本就没有能力应付了,SVM却可以,主要是因为SVM 产生的分类器很简洁,用到的样本信息很少(仅仅用到那些称之为“支持向量”的样本,此为后话),使得即使样本维数很高,也不会给存储和计算带来***烦(相对照而言,kNN算法在分类时就要用到所有样本,样本数巨大,每个样本维数再一高,这日子就没法过了……)。

下一节开始正式讨论SVM。别嫌我说得太详细哦。

转自:http://blog.sina.com.cn/s/blog_5f853eb10100qbb9.html

时间: 2024-10-25 12:52:04

SVM分类(一)SVM的八股简介的相关文章

Relation Extraction中SVM分类样例unbalance data问题解决 -松弛变量与惩罚因子

转载自:http://blog.csdn.net/yangliuy/article/details/8152390 1.问题描述 做关系抽取就是要从产品评论中抽取出描述产品特征项的target短语以及修饰该target的opinion短语,在opinion mining里面属于很重要的task,很多DM.NLP相关的paper在做这方面的工作.基本的思路是: (1)从sentence的parse tree(比如stanford parser)中选取候选target结点和候选opinion结点,然

VQ结合SVM分类方法

今天整理资料时,发现了在学校时做的这个实验,当时整个过程过重偏向依赖分类器方面,而又很难对分类器本身性能进行一定程度的改良,所以最后没有选用这个方案,估计以后也不会接触这类机器学习的东西了,希望它对刚入门的人有点用. SVM比较适合高维数据的二分类,本来准备对语音特征直接用SVM进行二分类,但是发现样本数据比较多,训练的2天都没有出收敛,最后想用VQ聚类的方法先抽取出具有代表性的语音,但是用这些代表性的训练集训练SVM分类器,效果还可以,用了一个下午就收敛了.识别结果还行,比较差的情况下,也有8

机器学习分类实例——SVM(修改)/Decision Tree/Naive Bayes

机器学习分类实例--SVM(修改)/Decision Tree/Naive Bayes 20180427-28笔记.30总结 已经5月了,毕设告一段落了,该准备论文了.前天开会老师说,希望我以后做关于语义分析那一块内容,会议期间还讨论了学姐的知识图谱的知识推理内容,感觉也挺有趣的,但是感觉应该会比较复杂.有时间的话希望对这块了解一下.其实吧,具体怎么展示我还是不太清楚... 大概就是图表那个样子.我先做一个出来,让老师看看,两个礼拜写论文.24/25答辩,6月就可以去浪哈哈哈哈哈哈. 一.工作

翻拍特征提取及SVM分类

如下介绍DCT.灰度图及DWT分别对正常及翻拍的特征提取,并将其用于SVM训练模型及对新数据的预测.根据不同方式数据的翻拍检测实验结果可得出鲁棒性DWT>DCT>灰度图. 一.DCT特征: 1. 从DCT特征图发现特征 对JPG的二次压缩存在明显的特征(二次压缩导致在左上角的连续区域外出现非0即非黑的像素点) 正常: 翻拍: 2. 提取DCT分类的特征 从DCT特征图里分别从横向纵向分相同区域提取分类特征(对区域里存在非0像素点的设为1不存在的设为0) 3. 实验结果 改变图片尺寸及降低图片质

SVM-支持向量机(一)线性SVM分类

SVM-支持向量机 SVM(Support Vector Machine)-支持向量机,是一个功能非常强大的机器学习模型,可以处理线性与非线性的分类.回归,甚至是异常检测.它也是机器学习中非常热门的算法之一,特别适用于复杂的分类问题,并且数据集为小型.或中型的数据集. 这章我们会解释SVM里的核心概念.原理以及如何使用. 线性SVM分类 我们首先介绍一下SVM里最基本的原理.这里先看一张图: 这个是Iris数据集中的部分数据,可以看到这两个类别可以由一条直线很简单地直接分开(也可以说它们是线性可

[机器学习之SVM] 线性SVM还是非线性SVM?【转】

SVM的应用领域很广,分类.回归.密度估计.聚类等,但我觉得最成功的还是在分类这一块. 用于分类问题时,SVM可供选择的参数并不多,惩罚参数C,核函数及其参数选择.对于一个应用,是选择线性核,还是多项式核,还是高斯核?还是有一些规则的. 实际应用中,多数情况是特征维数非常高.如OCR中的汉字识别,提取8方向梯度直方图特征,归一化的字符被等分成8*8的网格,每个网格计算出长度为8的方向直方图,特征维数是8*8*8 = 512维.在这样的高维空间中,想把两个字符类分开,用线性SVM是轻而易举的事,当

SVM分类结果全是同一类

前段时间用java编写的SVM分类程序,分类的结果全部是偏向同一类,看到网上有些博主的方法一直跟着处理也为解决.比如说对向量的归一化处理等,我发现自己的数据已经是归一化处理过后的结果了.后来调节了一下 param.eps = 0.1;  param.C =19; 这两个参数的数值,增大C的值可以解决这样的问题.不过不足之处在于,我的数据并不是所有这样的情况都可以解决的,还有待于解决!

机器学习:SVM分类数据偏斜问题

? ? 引言 ? ? 自己之前做认证分析的时候,存在一个问题就是需要把一个用户的数据作为合法用户,将其余用户的数据作为非法用户,那么这样的话分类结果就会存在数据偏斜问题,虽然自己采取的方法是从所有非法用户中随机抽取与合法用户样本数差不多的非法样本数输入进分类器,但自己也想了解一下如何解决这种数据偏斜问题,找到的方法记录如下 ? ? 问题描述 ? ? 参与分类的两个类别样本数量差异很大,比如说正类有10,000个,负类只有100个 ? ? 由于负类样本较少,算出的分类面会偏向于负类方向 ? ? 解

svm分类-无意义日记

libsvm 多分类 cmd ='-c 1.3195 -g 0.00097656'; 参数固定和不固定效果基本一样 正确率才66% 年前实验都做到93%了,过完年太久才拿到数据,居然忘记怎么做的了-_-|| 现在重新试 查了网上说要数据归一化0,1,试了正确率是0%-_-|| 郁闷... 原文地址:https://www.cnblogs.com/minniebest/p/12681045.html