3D游戏与计算机图形学中的数学方法-点线面

《易传·系辞上传》:”易有太极,是生两仪,两仪生四象,四象生八卦。”

借用一下古代先人们的智慧引一下本文的主题-三维图形中的点线面,在三维几何中也有一句话可以和上面的话相对应:由点成线,由线成面,由面成体,由体成形。

点向量和方向向量

首先我们要明确在三维空间中表示点的点向量和表示方向的方向向量的区别,例如A(x,y,z)可以表示一个点向量,而OA(x,y,z)就表示一个方向向量。方向向量在平移过程中将保持不变。

3D空间中的直线

3维空间中有两个点P1和P2,那么通过这两个点的直线可以定义为:P(t) = (1-t)P1 + tP2,其中t可以是任意实数。P1和P2之间的线段对应于t在0到1之间的值。

射线是指只有一个端点并且在给定方向V上无限延伸的直线。射线的参数方程为:P(t) = P0+tV,其中t的值大于0。

可以看出,无论是直线还是射线,都可以由一个点加上指向而构成的。

两条直线的关系

在同一平面里的两条直线,它们的关系有两种,相交或者平行。当然重合也是包含在相交里面的。

但是在三维世界里,加入了空间的概念,所以两条直线的关系又增加了一种,那就是异面。

两条直线如下所示:

P(s) = P0+sVP

Q(t)=Q0+tVQ

其中s和t可以是任意实数。

3D空间中的平面

对于给定的3D点P0和法向量N,那么经过P0且与N垂直的平面可以定义为满足方程N.(P-P0)=0的点的集合。如下图所示:

平面方程可以表示为Ax+By+Cz+D=0 ,   其中A,B,C是法向量N的x,y,z的分量,D = -N . P0 。

平面与直线的关系

(1)直线在平面内 即直线和平面有无数个公共点。

(2)直线和平面相交 即直线和平面有且只有一个公共点(垂直也是一种相交)。

(3)直线和平面平行 即直线和平面没有公共点。

平面与平面的关系

在3维空间中平面和平面之间的关系就类似于2维空间中直线和直线的关系:

(1)两个平面相交(重合是一种特殊的相交)。

(2)两个平面平行。

时间: 2024-10-19 18:51:12

3D游戏与计算机图形学中的数学方法-点线面的相关文章

3D游戏与计算机图形学中的数学方法-变换

1变换 在3D游戏的整个开发过程中,通常需要以某种方式对一系列的向量进行变换.通常用到的变换包括平移,缩放和旋转. 1.1通用变换 通常可将n x n可逆矩阵M看成是一个从坐标系到另一个坐标系的变换矩阵.M的列给出了坐标系从原坐标系到新坐标系的映射.例如M是一个n x n可逆矩阵,当M与向量(1,0,0),(0,1,0)和(0,0,1)相乘时,可以得到 类似地,M-1的列给出了坐标轴从新坐标轴系到原坐标轴系的映射.这样对于任意给定的线性无关的向量U,V,W可以构造一个变换矩阵,该矩阵将这些向量映

数学之美--计算机图形学中的数学方法论

我的github: https://github.com/jackyblf 我的公众号: 早期研究3D程序开发的程序员最大的情怀就是从无到有,自己实现一个游戏引擎.当时的我也是充满着这种复古情怀!! 以前的demo大部分都用c++写的,现在尽力全部改成html5+canvas/webgl版本 正在改写demo,编写文章,敬请期待 09年台式机out of order了,一直到去年年底,买了个硬盘数据线,把以前的代码全部拷贝出来了,万幸没损坏!!! 08年的vs2005代码,在vs2015中,竟然

计算机图形学中的种子填充算法c++程序实现

种子填充其实很简单,计算机图形学中介绍的使用栈,感觉作者是不是脑子进水了,直接使用一个队列用广搜就可以了啊,但是我就懒得写了,直接一个递归算了,有兴趣的同学自己试一试 #include<graphics.h>#include<conio.h>  #include<stdio.h>#include<math.h>int Graph[500][500] ; void scanline_seed_fill(int color,int sx,int sy){ Gra

Javascript中,数学方法可以分成以下几类: constans(常数)、power functions(乘方函数)、trigonometic functions(三角函数)、rounding functions(舍入函数)、random numbers(随机数字)

在Javascript中,数学方法可以分成以下几类: constans(常数).power functions(乘方函数).trigonometic functions(三角函数).rounding functions(舍入函数).random numbers(随机数字) 常数和乘方函数 Math.E 自然对数的底(为常数) 2.718 Math.LN10 10的自然对数 2.302 Math.LN2 2的自然对数 0.693 Math.PI 圆周率 3.1415 Math.SQRT1_2 1/

计算机图形学中的经常使用模型

今天在网上搜了一下图形学里面比較经常使用的模型.认为挺有意思,把它们收集起来,总结一下. 1.Lena/Lenna 这个模型是一个美女,名字叫Lena,是1972年11月<Playboy>(国内译为:花花公子)杂志的一个插图. 不知道花花公子杂志为何物的请自己去百度. Lena是瑞典人.依据英语标准发音,译为Lenna. 以下来张截图: 花花公子中的原图:http://www.ee.cityu.edu.hk/~lmpo/lenna/len_full.jpg 1973年6月.美国南加州大学的信号

计算机图形学中的常用模型

今天在网上搜了一下图形学里面比较常用的模型,觉得挺有意思,把它们收集起来,总结一下. 1.Lena/Lenna 这个模型是一个美女,名字叫Lena,是1972年11月<Playboy>(国内译为:花花公子)杂志的一个插图.不知道花花公子杂志为何物的请自己去百度. Lena是瑞典人,根据英语标准发音,译为Lenna.下面来张截图: 花花公子中的原图:http://www.ee.cityu.edu.hk/~lmpo/lenna/len_full.jpg 1973年6月,美国南加州大学的信号图像处理

计算机图形学中的中点画线,中点画圆,Bresenham画线与画圆算法

#include<iostream>#include<graphics.h>  // 这样引用 EasyX 图形库#include<conio.h>#include<time.h>#include<math.h>#include<stdlib.h>using namespace std; //Bresenham画线void Bresenham_line(int x0,int y0,int x1,int y1){ int x,y,dx,

计算机图形学中的边标志算法c++程序实现2

摘要: 讲一讲这个程序遇到的错误 1.就是最后一个点,当他只有一个点的时候,他就是吧后面的全部填充,这是因为标志填充算法一定要有两个边界才可以,我解决这个问题的办法是错开一个点 2.就是当有三个点的时候,第2和3点中间部分就不会被填充了,以上的解决办法就是错开一点,也就是把第二个点变成两个点 3,使用中点画圆方法画的圆,在这个算法中,由于他选择的点有可能不是下一个点,而是跟当前点平行的那一个,这个时候他就会填充的是这两个点,所以会有下面运行结果图中心形上方的填充空白,尤其是弧度比较水平的时候 #

JS中的数学方法

1 . Math.ceil()      向上取整 2.  Math.floor()     向下取整 3. Math.round()    四舍五入取整 4.  Math.random()   生成随机数          生成n - m 的随机整数     parseInt(n + Math.random()*(m-n+1));      parseInt是强制类型转化,转化为整数值 5. Math.abs()  取绝对值 6. Math.PI  数学上圆周率 7. Math.max()