<强化学习>马尔可夫决策过程MDP

1.MDP  / NFA    :马尔可夫模型和不确定型有限状态机的不同

    状态自动机:https://www.cnblogs.com/AndyEvans/p/10240790.html

MDP和NFA唯一相似的地方就是它们都有状态转移,抛掉这一点两者就八竿子打不着了。

2.MP  -> MRP -> MDP

3.计算给定策略下的价值函数 / 贝尔曼期望方程

我们用贝尔曼期望方程求解在某个给定策略π和环境ENV下的价值函数:

具体解法是:(下面是对于V(s)的解法)

从而对于每一个特定的π,都能得到其对应的价值函数。所以我们可以有一组的{ (π1,value_function_of_π1) ,(π2,value_function_of_π2) ......  }

但是我们解决问题的目标是拿到最优的那组,其他的扔掉,解决方法就是使用贝尔曼最优方程确定最优价值函数。

 

4. 确定最优价值函数 /贝尔曼最优方程 

我们的最优价值函数和最优策略是如下定义的,找最优价值函数的过程也就是找最优策略的过程

 

  最优价值函数     ====    一个MDP中的可能的最好的表现

  解决一个MDP    ====    确定最优价值函数

原文地址:https://www.cnblogs.com/dynmi/p/12294436.html

时间: 2024-10-01 00:37:57

<强化学习>马尔可夫决策过程MDP的相关文章

马尔可夫决策过程MDP

1. 马尔可夫模型的几类子模型 马尔科夫链(Markov Chain),了解机器学习的也都知道隐马尔可夫模型(Hidden Markov Model,HMM).它们具有的一个共同性质就是马尔可夫性(无后效性),也就是指系统的下个状态只与当前状态信息有关,而与更早之前的状态无关. 马尔可夫决策过程(Markov Decision Process, MDP)也具有马尔可夫性,与上面不同的是MDP考虑了动作,即系统下个状态不仅和当前的状态有关,也和当前采取的动作有关.还是举下棋的例子,当我们在某个局面

【强化学习】马尔可夫决策过程(MDP)基本原理

\1. 马尔可夫模型的几类子模型 大家应该还记得马尔科夫链(Markov Chain),了解机器学习的也都知道隐马尔可夫模型(Hidden Markov Model,HMM).它们具有的一个共同性质就是马尔可夫性(无后效性),也就是指系统的下个状态只与当前状态信息有关,而与更早之前的状态无关. 马尔可夫决策过程(Markov Decision Process, MDP)也具有马尔可夫性,与上面不同的是MDP考虑了动作,即系统下个状态不仅和当前的状态有关,也和当前采取的动作有关.还是举下棋的例子,

强化学习(二):马尔可夫决策过程

Finite Markov Decision Process 马尔可夫决策过程(MDP)是对连续决策进行建模,当前的动作不仅对当前产生影响,而且还会对将来的的情况产生影响,如果从奖励的角度,即MDP不仅影响即时的奖励,而且还会影响将来的长期奖励,因此,MDP需要对即时奖励与长期奖励的获得进行权衡. The Agent-Environment Interface MDP定义了从交互中学习的框架,决策者(或称为学习者)称为Agent,那与agent交互的所有统称为environment. 二者是连续

马尔可夫决策过程

概述 现在我们开始讨论增强学习(RL,reinforcement learning)和自适应控制( adaptive control).在监督式学习中,我们的算法总是尝试着在训练集合中使预测输出尽可能的模仿(mimic)实际标签y(或者潜在标签).在这样的设置下,标签明确的给出了每个输入x的正确答案.然而,对于许多序列决策和控制问题(sequential decision making and control problems),很难提供这样的明确的监督式学习.比如我们现在正在做一个四条腿的机器

【cs229-Lecture16】马尔可夫决策过程

之前讲了监督学习和无监督学习,今天主要讲"强化学习". 马尔科夫决策过程:Markov Decision Process(MDP) 价值函数:value function 值迭代:value iteration(算法,解决MDP) 政策迭代:policy iteration(算法,解决MDP) 什么是强化学习? 强化学习(reinforcement learning,又称再励学习,评价学习)是一种重要的机器学习方法,在智能控制机器人及分析预测等领域有许多应用.但在传统的机器学习分类中没

David Silver强化学习Lecture2:马尔可夫决策过程

课件:Lecture 2: Markov Decision Processes 视频:David Silver深度强化学习第2课 - 简介 (中文字幕) 马尔可夫过程 马尔可夫决策过程简介 马尔可夫决策过程(Markov Decision Processes, MDPs)形式上用来描述强化学习中的环境. 其中,环境是完全可观测的(fully observable),即当前状态可以完全表征过程. 几乎所有的强化学习问题都能用MDPs来描述: 最优控制问题可以描述成连续MDPs; 部分观测环境可以转

【RL系列】马尔可夫决策过程——状态价值评价与动作价值评价的统一

请先阅读上两篇文章: [RL系列]马尔可夫决策过程中状态价值函数的一般形式 [RL系列]马尔可夫决策过程与动态编程 状态价值函数,顾名思义,就是用于状态价值评价(SVE)的.典型的问题有"格子世界(GridWorld)"游戏(什么是格子世界?可以参考:Dynamic programming in Python),高尔夫游戏,这类问题的本质还是求解最优路径,共性是在学习过程中每一步都会由一个动作产生一个特定的状态,而到达该状态所获得的奖励是固定的,与如何到达,也就是之前的动作是无关的,并

决策理论(Decision theory)&amp;自动规划和调度(Automated planning and scheduling)(双语)

译的不好,还请见谅... 大部分内容来自wiki decision theory决策理论部分: Normative and descriptive decision theory 规范和描述性决策理论 规范或规范的决策理论关心的是确定最好的决定(在实践中,有些情况下,"最好"的不一定是最大,最优可能还包括值除了最大,但在特定或近似范围),假设一个理想的决策者充分了解,能够准确无误地计算,完全理性的.这说明性的方法的实际应用(人们应该做出决定)决策分析,旨在发现工具,方法和软件帮助人们做

增强学习笔记

马尔可夫决策过程MDP:http://www.cnblogs.com/jinxulin/p/3517377.html?utm_source=tuicool&utm_medium=referral