嵌入式C语言自我修养 08:变参函数的格式检查

8.1 属性声明:format

GNU 通过 attribute 扩展的 format 属性,用来指定变参函数的参数格式检查。

它的使用方法如下:

__attribute__(( format (archetype, string-index, first-to-check)))
void LOG(const char *fmt, ...)  __attribute__((format(printf,1,2)));

我们经常实现一些自己的打印调试函数。这些打印函数往往是变参函数,那编译器编译程序时,怎么知道我们的参数格式对不对呢?因为我们实现的是变参函数,参数的个数和格式都不确定。所以编译器表示压力很大,不知道该如何处理。

办法总是有的。这不,attribute 的format属性这时候就自带 BGM,隆重出场了。如上面的示例代码,我们定义一个 LOG 变参函数,用来实现打印功能。那编译器编译程序时,如何检查我们参数的格式是否正确呢?其实很简单,通过给 LOG 函数添加 attribute((format(printf,1,2))) 这个属性声明,就是告诉编译器:你知道printf函数不?你怎么对这个函数参数格式检查的,就按同样的方法,对 LOG 函数进行检查。

属性 format(printf,1,2) 有三个参数。第一个参数 printf 是告诉编译器,按照 printf 函数的检查标准来检查;第2个参数表示在 LOG 函数所有的参数列表中,格式字符串的位置索引;第3个参数是告诉编译器要检查的参数的起始位置。是不是没看明白?举个例子大家就明白了。

LOG("I am litao\n");
LOG("I am litao, I have %d houses!\n",0);
LOG("I am litao, I have %d houses! %d cars\n",0,0);

上面代码,是我们的 LOG 函数使用示例。变参函数,其参数个数跟 printf 函数一样,是不固定的。那么编译器如何检查我们的打印格式是否正确呢?很简单,我们只需要将格式字符串的位置告诉编译器就可以了,比如在第2行代码中:

LOG("I am litao, I have %d houses!\n",0);

在这个 LOG 函数中有2个参数,第一个是格式字符串,第2个是要打印的一个常量值0,用来匹配格式字符串中的格式符。

什么是格式字符串呢?顾名思义,如果一个字符串中含有格式符,那这个字符串就是格式字符串。比如这个格式字符串:"I am litao, I have %d houses!\n",里面含有格式符%,我们也可以叫它占位符。打印的时候,后面变参的值会代替这个占位符,在屏幕上显示出来。

我们通过 format(printf,1,2) 属性声明,告诉编译器:LOG 函数的参数,格式字符串的位置在所有参数列表中的索引是1,即第一个参数;要编译器帮忙检查的参数,在所有的参数列表里索引是2。知道了 LOG 参数列表中格式字符串的位置和要检查的参数位置,编译器就会按照检查 printf 的格式打印一样,对 LOG 函数进行参数检查。

如果我们的 LOG 函数定义为下面形式:

void LOG(int num, char *fmt, ...)  __attribute__((format(printf,2,3)));

在这个函数定义中,多了一个参数 num,格式字符串在参数列表中的位置发生了变化(在所有的参数列表中,索引为2),要检查的第一个变参的位置也发生了变化(索引为3),那我们使用 format 属性声明时,就要写成 format(printf,2,3) 的形式了。

以上就是 format 属性的使用方法,鉴于很多同学,可能对变参函数研究得不多,接下来我们就一起研究下变参函数的设计与实现,加深对本节知识的理解。

8.2 变参函数的设计与实现

对于一个普通函数,我们在函数实现中,不用关心实参,只需要在函数体内对形参直接引用即可。当函数调用时,传递的实参和形参个数和格式是匹配的。

变参函数,顾名思义,跟 printf 函数一样:参数的个数、类型都不固定。我们在函数体内因为预先不知道传进来的参数类型和个数,所以实现起来会稍微麻烦一点。首先要解析传进来的实参,保存起来,然后才能接着像普通函数一样,对实参进行处理。

变参函数初体验

我们接下来,就定义一个变参函数,实现的功能很简单,即打印传进来的实参值。

void print_num(int count, ...)
{
    int *args;
    args = &count + 1;
    for( int i = 0; i < count; i++)
    {
        printf("*args: %d\n", *args);
        args++;
    }
}
int main(void)
{
    print_num(5,1,2,3,4,5);
    return 0;
}

变参函数的参数存储其实跟 main 函数的参数存储很像,由一个连续的参数列表组成,列表里存放的是每个参数的地址。在上面的函数中,有一个固定的参数 count,这个固定参数的存储地址后面,就是一系列参数的指针。在 print_num 函数中,先获取 count 参数地址,然后使用 &count + 1 就可以获取下一个参数的指针地址,使用指针变量 args 保存这个地址,并依次访问下一个地址,就可以直接打印传进来的各个实参值了。程序运行结果如下。

*args:1
*args:2
*args:3
*args:4
*args:5

变参函数改进版

上面的程序使用一个 int 的指针变量依次去访问实参列表。我们接下来把程序改进一下,使用 char 类型的指针来实现这个功能,使之兼容更多的参数类型。

void print_num2(int count,...)
{
    char *args;
    args = (char *)&count + 4;
    for(int i = 0; i < count; i++)
    {
        printf("*args: %d\n", *(int *)args);
        args += 4;
    }
}
int main(void)
{
    print_num2(5,1,2,3,4,5);
    return 0;
}

在这个程序中,我们使用char 类型的指针。涉及到指针运算,一定要注意每一个参数的地址都是4字节大小,所以我们获取下一个参数的地址是:(char )&count + 4;。不同类型的指针加1操作,转换为实际的数值运算是不一样的。对于一个指向 int 类型的指针变量 p,p+1表示 p + 1 sizeof(int),对于一个指向 char 类型的指针变量,p + 1 表示 p + 1 sizeof(char)。两种不同类型的指针,其运算细节就体现在这里。当然,程序最后的运行结果跟上面的程序是一样的,如下所示。

*args:1
*args:2
*args:3
*args:4
*args:5

变参函数 V3.0 版本

对于变参函数,编译器或计算机系统一般会提供一些宏给程序员使用,用来解析函数的参数。这样程序员就不用自己解析参数了,直接使用封装好的宏即可。编译器提供的宏有:

  • va_list:定义在编译器头文件中 typedef char* va_list;。
  • va_start(args,fmt):根据参数 fmt 的地址,获取 fmt 后面参数的地址,并保存在 args 指针变量中。
  • va_end(args):释放 args 指针,将其赋值为 NULL。有了这些宏,我们的工作就简化了很多。我们就不用撸起袖子,自己解析了。

    void print_num3(int count,...)
    {
    va_list args;
    va_start(args,count);
    for(int i = 0; i < count; i++)
    {
    printf("args: %d\n", (int *)args);
    args += 4;
    }
    va_end(args);
    }
    int main(void)
    {
    print_num3(5,1,2,3,4,5);
    return 0;
    }

变参函数 V4.0 版本

在 V3.0 版本中,我们使用编译器提供的三个宏,省去了解析参数的麻烦。但打印的时候,我们还必须自己实现。在 V4.0 版本中,我们继续改进,使用 vprintf 函数实现我们的打印功能。vprintf 函数的声明在 stdio.h 头文件中。

CRTIMP int __cdecl __MINGW_NOTHROW        vprintf (const char*, __VALIST);

vprintf 函数有2个参数,一个是格式字符串指针,一个是变参列表。在下面的程序里,我们可以将,使用 va_start 解析后的变参列表,直接传递给 vprintf 函数,实现打印功能。

void  my_printf(char *fmt,...)
{
    va_list args;
    va_start(args,fmt);
    vprintf(fmt,args);
    va_end(args);
}
int main(void)
{
    int num = 0;
    my_printf("I am litao, I have %d car\n", num);
    return 0;
}

运行结果如下。

I am litao, I have 0 car

变参函数 V5.0 版本

上面的 my_printf() 函数,基本上实现了跟 printf() 函数相同的功能:支持变参,支持多种格式的数据打印。接下来,我们还需要对其添加 format 属性声明,让编译器在编译时,像检查 printf 一样,检查 my_printf() 函数的参数格式。V5.0 版本如下:

void __attribute__((format(printf,1,2))) my_printf(char *fmt,...)
{
    va_list args;
    va_start(args,fmt);
    vprintf(fmt,args);
    va_end(args);
}
int main(void)
{
    int num = 0;
    my_printf("I am litao, I have %d car\n", num);
    return 0;
}

8.3 实现自己的日志打印函数

如果你坚持看到了这里,可能会问,有现成的打印函数可用,为什么还要费这么大的劲,去实现自己的打印函数?原因其实很简单。自己实现的打印函数,除了可以实现自己需要的打印格式,还有2个优点,即可以实现打印开关控制、优先级控制。

闭上迷茫的双眼,好好想象一下。你在调试一个模块,或者一个系统,有好多个文件。如果你在每个文件里添加 printf 打印,调试完成后再删掉,是不是很麻烦?我们自己实现的打印函数,通过一个宏开关,就可以直接关掉或打开,比较方便。比如下面的代码。

#define DEBUG //打印开关

void __attribute__((format(printf,1,2))) LOG(char *fmt,...)
{
#ifdef DEBUG
    va_list args;
    va_start(args,fmt);
    vprintf(fmt,args);
    va_end(args);
#endif
}
int main(void)
{
    int num = 0;
    LOG("I am litao, I have %d car\n", num);
    return 0;
}

当我们定义一个 DEBUG 宏时,LOG 函数实现普通的打印功能;当这个 DEBUG 宏没有定义,LOG 函数就是个空函数。通过这个宏,我们就实现了打印函数的开关功能,在实际调试中比较实用,非常方便。在 Linux 内核的各个模块中,你会经常看到大量的自定义打印函数或宏,如 pr_debug、pr_info 等。

除此之外,你可以通过宏,设置一些打印等级。比如可以分为 ERROR、WARNNING、INFO、LOG 等级,根据你设置的打印等级,模块打印的 log 信息也会不一样。这个功能就不展开了,有兴趣你可以试一下。

本教程根据 C语言嵌入式Linux高级编程视频教程 第05期 改编,电子版书籍可加入QQ群:475504428 下载,更多嵌入式视频教程,可关注:
微信公众号:宅学部落(armlinuxfun)
51CTO学院-王利涛老师:http://edu.51cto.com/sd/d344f

原文地址:http://blog.51cto.com/zhaixue/2348618

时间: 2024-10-08 20:49:19

嵌入式C语言自我修养 08:变参函数的格式检查的相关文章

嵌入式C语言自我修养 12:有一种宏,叫可变参数宏

12.1 什么是可变参数宏 在上面的教程中,我们学会了变参函数的定义和使用,基本套路就是使用 va_list.va_start.va_end 等宏,去解析那些可变参数列表我们找到这些参数的存储地址后,就可以对这些参数进行处理了:要么自己动手,自己处理:要么继续调用其它函来处理. void print_num(int count, ...) { va_list args; va_start(args,count); for(int i = 0; i < count; i++) { printf(&qu

嵌入式C语言自我修养 13:总结

13.1 总结 前面12节的课程,主要针对 Linux 内核中 GNU C 扩展的一些常用 C 语言语法进行了分析.GNU C 的这些扩展语法,主要用来完善 C 语言标准和编译优化.而通过 C 标准的发展过程我们又发现,对于一些编译器扩展的一些特性,或者其它编程语言(如:C++)中的好的特性和语法,C 标准也会适时地吸收进来,作为新的 C 语言标准. 在 GNU C 的这些扩展语法中,attribute 和宏定义是两大特色.在嵌入式底层系统中,尤其是 Linux 内核和 U-boot 中,大量使

嵌入式C语言自我修养 03:宏构造利器 - 语句表达式

3.1 基础复习:表达式.语句和代码块 表达式 表达式和语句是 C 语言中的基础概念.什么是表达式呢?表达式就是由一系列操作符和操作数构成的式子.操作符可以是 C 语言标准规定的各种算术运算符.逻辑运算符.赋值运算符.比较运算符等.操作数可以是一个常量,也可以是一个变量.表达式也可以没有操作符,单独的一个常量甚至是一个字符串,也是一个表达式.下面的字符序列都是表达式: 2 + 3 2 i = 2 + 3 i = i++ + 3 "wit" 表达式一般用来数据计算或实现某种功能的算法.表

嵌入式C语言自我修养 09:链接过程中的强符号和弱符号

9.1 属性声明:weak GNU C 通过 attribute 声明weak属性,可以将一个强符号转换为弱符号. 使用方法如下. void __attribute__((weak)) func(void); int num __attribte__((weak); 编译器在编译源程序时,无论你是变量名.函数名,在它眼里,都是一个符号而已,用来表征一个地址.编译器会将这些符号集中,存放到一个叫符号表的 section 中. 在一个软件工程项目中,可能有多个源文件,由不同工程师开发.有时候可能会遇

嵌入式C语言自我修养 04:Linux 内核第一宏:container_of

4.1 typeof 关键字 ANSI C 定义了 sizeof 关键字,用来获取一个变量或数据类型在内存中所占的存储字节数.GNU C 扩展了一个关键字 typeof,用来获取一个变量或表达式的类型.这里使用关键字可能不太合适,因为毕竟 typeof 还没有被写入 C 标准,是 GCC 扩展的一个关键字.为了方便,我们就姑且称之为关键字吧. 通过使用 typeof,我们可以获取一个变量或表达式的类型.所以 typeof 的参数有两种形式:表达式或类型. int i ; typeof(i) j

嵌入式C语言自我修养 10:内联函数探究

10.1 属性声明:noinline & always_inline 这一节,接着讲 attribute 属性声明,attribute可以说是 GNU C 最大的特色.我们接下来继续讲一下跟内联函数相关的两个属性:noinline 和 always_inline.这两个属性的用途是告诉编译器:编译时,对我们指定的函数内联展开或不展开.它们的使用方法如下. static inline __attribute__((noinline)) int func(); static inline __att

嵌入式C语言自我修养 05:零长度数组

5.1 什么是零长度数组 顾名思义,零长度数组就是长度为0的数组. ANSI C 标准规定:定义一个数组时,数组的长度必须是一个常数,即数组的长度在编译的时候是确定的.在ANSI C 中定义一个数组的方法如下: int a[10]; C99 新标准规定:可以定义一个变长数组. int len; int a[len]; 也就是说,数组的长度在编译时是未确定的,在程序运行的时候才确定,甚至可以由用户指定大小.比如,我们可以定义一个数组,然后在程序运行时才指定这个数组的大小,还可以通过输入数据来初始化

嵌入式C语言自我修养 06:U-boot镜像自拷贝分析:section属性

6.1 GNU C 的扩展关键字:attribute GNU C 增加一个 atttribute 关键字用来声明一个函数.变量或类型的特殊属性.声明这个特殊属性有什么用呢?主要用途就是指导编译器在编译程序时进行特定方面的优化或代码检查.比如,我们可以通过使用属性声明指定某个变量的数据边界对齐方式. attribute 的使用非常简单,当我们定义一个函数.变量或类型时,直接在它们名字旁边添加下面的属性声明即可: __atttribute__((ATTRIBUTE)) 这里需要注意的是:attrib

嵌入式C语言自我修养 07:地址对齐那些事儿

7.1 属性声明:aligned GNU C 通过 attribute 来声明 aligned 和 packed 属性,指定一个变量或类型的对齐方式.这两个属性用来告诉编译器:在给变量分配存储空间时,要按指定的地址对齐方式给变量分配地址.如果你想定义一个变量,在内存中以8字节地址对齐,就可以这样定义. int a __attribute__((aligned(8)); 通过 aligned 属性,我们可以直接显式指定变量 a 在内存中的地址对齐方式.aligned 有一个参数,表示要按几字节对齐