并发编程8 线程的创建&验证线程之间数据共享&守护线程&线程进程效率对比&锁(死锁/递归锁)

1.线程理论以及线程的两种创建方法

2.线程之间是数据共享的与join方法

3.多线程和多进程的效率对比

4.数据共享的补充线程开启太快

5.线程锁 互斥锁 同步锁

6.死锁现象和递归锁

7.守护线程和守护进程的对比

8.补充

9.GIL锁&GIL锁与线程锁的区别

10.GIL锁补充

11.信号量 时间补充说明

原文地址:https://www.cnblogs.com/studybrother/p/10269278.html

时间: 2024-10-26 03:12:26

并发编程8 线程的创建&验证线程之间数据共享&守护线程&线程进程效率对比&锁(死锁/递归锁)的相关文章

并发&并行 同步&异步 GIL 任务 同步锁 死锁 递归锁

# 并发&并行 同步&异步 GIL 任务 同步锁 死锁 递归锁 # 并发:是指系统具有处理多个任务(动作)的能力 # 并行:是指系统具有 同时 处理多个任务(动作)的能力 # 同步:当进程执行到一个IO(等待外部数据)的时候,需要等待外部数据接收完 # 异步:当进程执行到一个IO(等待外部数据)的时候,不需要等待外部数据接收完,还可以做其它的处理 # GIL: 全局解释器锁 在python中,无论你启多少个线程,你有多少个cpu,python在执行的时候在同一时刻只请允许一个线程运行 #

python 线程(创建2种方式,守护进程,锁,死锁,递归锁,GIL锁,其他方式)

###############总结############ 线程创建的2种方式(重点) 进程:资源分配单位    线程:cpu执行单位(实体) 线程的创建和销毁的开销特别小 线程之间资源共享,是同一个进程中的资源共享,会涉及到安全问题,所以需要加锁解决 锁:牺牲了效率,保证了数据安全(重点) 死锁现象:出现在嵌套的时候,双方互相抢对方已经拿到的锁,导致双方互相等待(重点) 递归锁: 解决了死锁现象(重点) rlock 首先本身就是个互斥锁,维护了一个计数器,每次acquire+1,release

线程的创建 验证线程之间共享数据 守护线程 线程进程效率对比 锁 死锁 递归锁

线程(from threading import Thread):CPU调度的最小单位 线程的两种创建方式:方式一: 1 from threading import Thread 2 def f1(i): 3 print(i) 4 if __name__ == '__main__': 5 for i in range(10): 6 t = Thread(target=f1,args=(i,)) 7 t.start() 8 print('主线程') 方式二: 1 from threading im

Python并发编程05/ 死锁/递归锁/信号量/GIL锁/进程池/线程池

目录 Python并发编程05/ 死锁/递归锁/信号量/GIL锁/进程池/线程池 1.昨日回顾 2.死锁现象与递归锁 2.1死锁现象 2.2递归锁 3.信号量 4.GIL全局解释器锁 4.1背景 4.2为什么加锁 5.GIL与Lock锁的区别 6.验证计算密集型IO密集型的效率 6.1 IO密集型 6.2 计算密集型 7.多线程实现socket通信 7.1服务端 7.2客户端 8.进程池,线程池 Python并发编程05/ 死锁/递归锁/信号量/GIL锁/进程池/线程池 1.昨日回顾 #生产者消

并发编程---死锁||递归锁---信号量---Event事件---定时器

死锁 互斥锁:Lock(),互斥锁只能acquire一次 递归锁:  RLock(),可以连续acquire多次,每acquire一次计数器+1,只有计数为0时,才能被抢到acquire # 死锁 from threading import Thread,Lock import time mutexA = Lock() mutexB = Lock() class MyThread(Thread): def run(self): self.f1() self.f2() def f1(self):

Java并发编程(二)-- 创建、运行线程

Java线程 Java线程类也是一个object类,它的实例都继承自java.lang.Thread或其子类. Java可以用如下方式创建一个线程: Tread thread = new Thread(); 执行该线程可以调用该线程的start()方法: thread.start(); 在上面的例子中,我们并没有为线程编写运行代码,因此调用该方法后线程就终止了. 创建.执行线程的方式 无返回: 实现Runnable接口; 继承Thread类,重写run(); 有返回: 实现Callable接口,

Python进阶(3)_进程与线程中的lock(互斥锁、递归锁、信号量)

1.同步锁 (Lock) 当各个线程需要访问一个公共资源时,会出现数据紊乱 例如: 1 import threading,time 2 def sub(): 3 global num #对全局变量进行操作 4 5 temp=num 6 time.sleep(0.001) #模拟线程执行中出现I/o延迟等 7 num=temp-1 #所有线程对全局变量进行减一 8 9 time.sleep(1) 10 11 num=100 12 l=[] 13 14 for i in range(100): 15

python并发编程之多线程2------------死锁与递归锁,信号量等

一.死锁现象与递归锁 进程也是有死锁的 所谓死锁: 是指两个或两个以上的进程或线程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用, 它们都将无法推进下去.此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程, 如下就是死锁 1 死锁------------------- 2 from threading import Thread,Lock,RLock 3 import time 4 mutexA = Lock() 5 mutexB = Lock() 6

python-GIL、死锁递归锁及线程补充

一.GIL介绍 GIL全称 Global Interpreter Lock ,中文解释为全局解释器锁.它并不是Python的特性,而是在实现python的主流Cpython解释器时所引入的一个概念,CIL本质上就是一把互斥锁,将并发运行变成串行,以此来控制同一时间内共享数据只能被一个任务所修改,从而保证数据的安全性. 注:每次执行python程序,都会产生一个独立的进程,进程里除了能看到的若干线程,还有看不见的解释器开启的垃圾回收等解释器级别的线程. #1 所有数据都是共享的,这其中,代码作为一