题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3307
Description has only two Sentences
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 1733 Accepted Submission(s):
525
Problem Description
an = X*an-1 + Y and Y mod (X-1) =
0.
Your task is to calculate the smallest positive integer k that
ak mod a0 = 0.
Input
Each line will contain only three integers X, Y,
a0 ( 1 < X < 231, 0 <= Y < 263, 0
< a0 < 231).
Output
For each case, output the answer in one line, if there
is no such k, output "Impossible!".
Sample Input
2 0 9
Sample Output
1
an = X*an-1 + Y ,给你X,Y,a0,叫你求出最小的整数k(k>0)使得 ak% a0=0。根据公式我们可以求出an= a0*Xn-1+(x0+x1+x2+……+xn-1)Y。由等比数列前项和公式可得
an=a0*Xn-1+(xn-1)*Y/(x-1)。
所以只需令(xk-1)*Y/(x-1)%a0=0,求出k的值。
令Y‘=Y/(x-1),d=gcd(Y/(x-1),a0)
Y‘/=d,a0/=d;
此时Y‘与a0互质
(xk-1)*Y/(x-1)%a0=0
等价于
(xk-1)%a0=0
xk%a0=1
而这就符合欧拉定理aφ(n)Ξ 1(mod n)
如果gcd(x,a0)!=1则k无解
否则求出phi(a0)再除以满足条件的phi(a0)的因子
#include<iostream> using namespace std; #define ll long long ll zys[1000][2],cnt; ll gcd(ll a,ll b) { return b?gcd(b,a%b):a; } ll phi(ll x) { ll ans=x; for(ll i=2;i*i<=x;i++) { if(x%i==0) { ans=ans/i*(i-1); while(x%i==0)x/=i; } } if(x>1) ans=ans/x*(x-1); return ans; } void fj(ll ans) { for(ll i=2;i*i<=ans;i++) { if(ans%i==0) { zys[cnt][0]=i; zys[cnt][1]=0; while(ans%i==0) { ans/=i; zys[cnt][1]++; } cnt++; } } if(ans>1) { zys[cnt][0]=ans; zys[cnt++][1]=1; } } ll poww(ll a,ll b,ll mod) { ll ans=1; while(b) { if(b&1)ans=ans*a%mod; a=a*a%mod; b>>=1; } return ans; } int main() { ll x,y,a,c,d; while(cin>>x>>y>>a) { if(x==1) { if(gcd(y,a)==1)cout<<a<<endl; else cout<<a/gcd(y,a); continue; } c=y/(x-1); if(c%a==0) { cout<<1<<endl; continue; } d=gcd(c,a); if(gcd(x,a/d)!=1)cout<<"Impossible!"<<endl; else { a/=d; ll ans=phi(a); cnt=0; fj(ans); for(int i=0;i<cnt;i++) { for(int j=1;j<=zys[i][1];j++) { if(poww(x,ans/zys[i][0],a)==1)ans/=zys[i][0]; } } cout<<ans<<endl; } } return 0; }
原文地址:https://www.cnblogs.com/chen99/p/10680660.html