Python 爬取 13 个旅游城市,告诉你五一大家最爱去哪玩?

五一假期已经结束,小伙伴是不是都还没有玩过瘾?但是没办法,还有很多bug等着我们去写,同样还有需要money需要我们去赚。为了生活总的拼搏。

今年五一放了四天假,很多人不再只是选择周边游,因为时间充裕,选择了稍微远一点的景区,甚至出国游。各个景点成了人山人海,拥挤的人群,甚至去卫生间都要排队半天,那一刻我突然有点理解灭霸的行为了。

今天,通过分析去哪儿网部分城市门票售卖情况,简单的分析一下哪些景点比较受欢迎。等下次假期可以做个参考。

通过请求https://piao.qunar.com/ticket/list.htm?keyword=北京,获取北京地区热门景区信息,再通过BeautifulSoup去分析提取出我们需要的信息。

这里为了偷懒只爬取了前4页的景点信息,每页有15个景点。因为去哪儿并没有什么反爬措施,所以直接请求就可以了。

这里只是随机选择了13个热门城市:北京, 上海, 成都, 三亚, 广州, 重庆, 深圳, 西安, 杭州, 厦门, 武汉, 大连, 苏州。

并将爬取的数据存到了MongoDB数据库 。

爬虫部分完整代码如下

import requests
from bs4 import BeautifulSoup
from pymongo import MongoClient

class QuNaEr():
    def __init__(self, keyword, page=1):
        self.keyword = keyword
        self.page = page

    def qne_spider(self):
        url = ‘https://piao.qunar.com/ticket/list.htm?keyword=%s&region=&from=mpl_search_suggest&page=%s‘ % (self.keyword, self.page)
        response = requests.get(url)
        response.encoding = ‘utf-8‘
        text = response.text
        bs_obj = BeautifulSoup(text, ‘html.parser‘)

        arr = bs_obj.find(‘div‘, {‘class‘: ‘result_list‘}).contents
        for i in arr:
            info = i.attrs
            # 景区名称
            name = info.get(‘data-sight-name‘)
            # 地址
            address = info.get(‘data-address‘)
            # 近期售票数
            count = info.get(‘data-sale-count‘)
            # 经纬度
            point = info.get(‘data-point‘)

            # 起始价格
            price = i.find(‘span‘, {‘class‘: ‘sight_item_price‘})
            price = price.find_all(‘em‘)
            price = price[0].text

            conn = MongoClient(‘localhost‘, port=27017)
            db = conn.QuNaEr # 库
            table = db.qunaer_51 # 表

            table.insert_one({
                ‘name‘      :   name,
                ‘address‘   :   address,
                ‘count‘     :   int(count),
                ‘point‘     :   point,
                ‘price‘     :   float(price),
                ‘city‘      :   self.keyword
            })

if __name__ == ‘__main__‘:
    citys = [‘北京‘, ‘上海‘, ‘成都‘, ‘三亚‘, ‘广州‘, ‘重庆‘, ‘深圳‘, ‘西安‘, ‘杭州‘, ‘厦门‘, ‘武汉‘, ‘大连‘, ‘苏州‘]
    for i in citys:
        for page in range(1, 5):
            qne = QuNaEr(i, page=page)
            qne.qne_spider()

  

效果图如下

有了数据,我们就可以分析出自己想要的东西了

1、最受欢迎的15个景区

由图可以看出,在选择的13个城市中,最热门的景区为上海的迪士尼乐园

代码如下

from pymongo import MongoClient
# 设置字体,不然无法显示中文
from pylab import *

mpl.rcParams[‘font.sans-serif‘] = [‘SimHei‘]

conn = MongoClient(‘localhost‘, port=27017)
db = conn.QuNaEr # 库
table = db.qunaer_51 # 表

result = table.find().sort([(‘count‘, -1)]).limit(15)
# x,y轴数据
x_arr = []  # 景区名称
y_arr = []  # 销量
for i in result:
    x_arr.append(i[‘name‘])
    y_arr.append(i[‘count‘])

"""
去哪儿月销量排行榜
"""
plt.bar(x_arr, y_arr, color=‘rgb‘)  # 指定color,不然所有的柱体都会是一个颜色
plt.gcf().autofmt_xdate() # 旋转x轴,避免重叠
plt.xlabel(u‘景点名称‘)  # x轴描述信息
plt.ylabel(u‘月销量‘)  # y轴描述信息
plt.title(u‘拉钩景点月销量统计表‘)  # 指定图表描述信息
plt.ylim(0, 4000)  # 指定Y轴的高度
plt.savefig(‘去哪儿月销售量排行榜‘)  # 保存为图片
plt.show()

 

2、景区热力图

 

这里为了方(tou)便(lan),只展示一下北京地区的景区热力图。用到了百度地图的开放平台。首先需要先注册开发者信息,首页底部有个申请秘钥的按钮,点击进行创建就可以了。我的应用类型选择的是浏览器端,因此只需要组装数据替换掉相应html代码即可。另外还需要将自己访问应用的AK替换掉。效果图如下

3、景区价格

 

价格是出游第一个要考虑的,一开始想统计一下各城市的平均价格,但是后来发现效果不是很好,比如北京的刘老根大舞台价格在580元,这样拉高了平均价格。就好比姚明和潘长江的平均身高在190cm,并没有什么说服力。所以索性展示一下景区的价格分布。

根据价格设置了六个区间

通过上图得知,大部分的景区门票价格都在200元以下。每次旅游花费基本都在交通、住宿、吃吃喝喝上了。门票占比还是比较少的。

代码如下

arr = [[0, 50], [50,100], [100, 200], [200,300], [300,500], [500,1000]]
name_arr = []
total_arr = []
for i in arr:
    result = table.count({‘price‘: {‘$gte‘: i[0], ‘$lt‘: i[1]}})
    name = ‘%s元 ~ %s元 ‘ % (i[0], i[1])
    name_arr.append(name)
    total_arr.append(result)

color = ‘red‘, ‘orange‘, ‘green‘, ‘blue‘, ‘gray‘, ‘goldenrod‘ # 各类别颜色
explode = (0.2, 0, 0, 0, 0, 0)  # 各类别的偏移半径

# 绘制饼状图
pie = plt.pie(total_arr, colors=color, explode=explode, labels=name_arr, shadow=True, autopct=‘%1.1f%%‘)

plt.axis(‘equal‘)
plt.title(u‘热点旅游景区门票价格比例‘, fontsize=12)

plt.legend(loc=0, bbox_to_anchor=(0.82, 1))  # 图例
# 设置legend的字体大小
leg = plt.gca().get_legend()
ltext = leg.get_texts()
plt.setp(ltext, fontsize=6)
# 显示图
plt.show()

 

最后欢迎大家关注我的公众号,每天都会努力分享各种干货

原文地址:https://www.cnblogs.com/wyl-0120/p/10817418.html

时间: 2024-11-06 18:23:26

Python 爬取 13 个旅游城市,告诉你五一大家最爱去哪玩?的相关文章

python爬取动态生成的网页——以百度手机助手为例

在爬取js动态生成的页面时,直接打开页面是获取不到内容的,比如,我在爬取百度手机助手的应用时,就遇到了这样一个问题.在搜索旅游类应用时,返回数据有几页的内容,但是不管你翻到第几页,查看源代码发现都一样,都是第一页内容的源代码.分析原因我觉得可能是这样的:假设百度应用一页内容有八个应用,你把查询提交后他把内容的前8个生成一个html,然后再你翻页时,通过js,ajax等方式替换原来的8个应用,比如你选择第五页时,把返回应用列表的33-40个应用替换原来的1-8的内容.(应该是ajax或者其他表单提

爬取链家任意城市租房数据(北京朝阳)

1 #!/usr/bin/env python 2 # -*- coding: utf-8 -*- 3 # @Time : 2019-08-16 15:56 4 # @Author : Anthony 5 # @Email : [email protected] 6 # @File : 爬取链家任意城市租房数据.py 7 8 9 import requests 10 from lxml import etree 11 import time 12 import xlrd 13 import os

爬取链家任意城市二手房数据(天津)

1 #!/usr/bin/env python 2 # -*- coding: utf-8 -*- 3 # @Time : 2019-08-16 12:40 4 # @Author : Anthony 5 # @Email : [email protected] 6 # @File : 爬取链家任意城市二手房数据.py 7 8 9 import requests 10 from lxml import etree 11 import time 12 import xlrd 13 import o

使用python爬取csdn博客访问量

最近学习了python和爬虫,想写一个程序练练手,所以我就想到了大家都比较关心的自己的博客访问量,使用python来获取自己博客的访问量,这也是后边我将要进行的项目的一部分,后边我会对博客的访问量进行分析,以折线图和饼图等可视化的方式展示自己博客被访问的情况,使自己能更加清楚自己的哪些博客更受关注,博客专家请勿喷,因为我不是专家,我听他们说专家本身就有这个功能. 一.网址分析 进入自己的博客页面,网址为:http://blog.csdn.net/xingjiarong 网址还是非常清晰的就是cs

python爬取某个网页的图片-如百度贴吧

python爬取某个网页的图片-如百度贴吧 作者:vpoet 日期:大约在冬季 注:随意copy,不用告诉我 #coding:utf-8 import urllib import urllib2 import re if __name__ =="__main__": rex=r'src="(http://imgsrc.baidu.com/forum/w%3D580.*?\.jpg)"'; Response=urllib2.urlopen("http://t

使用python爬取MedSci上的影响因子排名靠前的文献

使用python爬取medsci上的期刊信息,通过设定条件,然后获取相应的期刊的的影响因子排名,期刊名称,英文全称和影响因子.主要过程如下: 首先,通过分析网站http://www.medsci.cn/sci的交互过程.可以使用谷歌或火狐浏览器的“审查元素-->Network”,然后就可以看到操作页面就可以看到网站的交互信息.当在网页上点击“我要查询”时,网页会发送一个POST消息给服务器,然后,服务器返回查询结果 然后,将查询到的结果使用正则表达式提取出需要的数据. 最后将提取出的数据输出到文

Python爬取京东商品数据

对京东某一商品信息页面的HTML代码进行分析,可以发现它的图书产品信息页面都含有这样一段代码(不同类的商品页面有些不同): window.pageConfig={compatible:true,searchType: 1,product:{"skuid":"11408255","name":"\u4f17\u795e\u7684\u536b\u661f\uff1a\u4e2d\u56fd\u7981\u533a","

利用Python爬取豆瓣电影

目标:使用Python爬取豆瓣电影并保存MongoDB数据库中 我们先来看一下通过浏览器的方式来筛选某些特定的电影: 我们把URL来复制出来分析分析: https://movie.douban.com/tag/#/?sort=T&range=0,10&tags=%E7%94%B5%E5%BD%B1,%E7%88%B1%E6%83%85,%E7%BE%8E%E5%9B%BD,%E9%BB%91%E5%B8%AE 有3个字段是非常重要的: 1.sort=T 2.range=0,10 3.tag

Python爬取中国天气网天气

Python爬取中国天气网天气 基于requests库制作的爬虫. 使用方法:打开终端输入 "python3 weather.py 北京(或你所在的城市)" 程序正常运行需要在同文件夹下加入一个"data.csv"文件,内容请参考链接:https://www.cnblogs.com/Rhythm-/p/9255190.html 运行效果: 源码: import sys import re import requests import webbrowser from