分库分表?如何做到永不迁移数据和避免热点?

一、前言

中大型项目中,一旦遇到数据量比较大,小伙伴应该都知道就应该对数据进行拆分了。有垂直和水平两种。
垂直拆分比较简单,也就是本来一个数据库,数据量大之后,从业务角度进行拆分多个库。如下图,独立的拆分出订单库和用户库。

水平拆分的概念,是同一个业务数据量大之后,进行水平拆分。

上图中订单数据达到了4000万,我们也知道mysql单表存储量推荐是百万级,如果不进行处理,mysql单表数据太大,会导致性能变慢。使用方案可以参考数据进行水平拆分。把4000万数据拆分4张表或者更多。当然也可以分库,再分表;把压力从数据库层级分开。

二、分库分表方案

分库分表方案中有常用的方案,hash取模和range范围方案;分库分表方案最主要就是路由算法,把路由的key按照指定的算法进行路由存放。下边来介绍一下两个方案的特点。
1、hash取模方案

在我们设计系统之前,可以先预估一下大概这几年的订单量,如:4000万。每张表我们可以容纳1000万,也我们可以设计4张表进行存储。
那具体如何路由存储的呢?hash的方案就是对指定的路由key(如:id)对分表总数进行取模,上图中,id=12的订单,对4进行取模,也就是会得到0,那此订单会放到0表中。id=13的订单,取模得到为1,就会放到1表中。为什么对4取模,是因为分表总数是4。

  • 优点:

订单数据可以均匀的放到那4张表中,这样此订单进行操作时,就不会有热点问题。
热点的含义:热点的意思就是对订单进行操作集中到1个表中,其他表的操作很少。
订单有个特点就是时间属性,一般用户操作订单数据,都会集中到这段时间产生的订单。如果这段时间产生的订单 都在同一张订单表中,那就会形成热点,那张表的压力会比较大。

  • 缺点:

将来的数据迁移和扩容,会很难。
如:业务发展很好,订单量很大,超出了4000万的量,那我们就需要增加分表数。如果我们增加4个表

一旦我们增加了分表的总数,取模的基数就会变成8,以前id=12的订单按照此方案就会到4表中查询,但之前的此订单时在0表的,这样就导致了数据查不到。就是因为取模的基数产生了变化。
遇到这个情况,我们小伙伴想到的方案就是做数据迁移,把之前的4000万数据,重新做一个hash方案,放到新的规划分表中。也就是我们要做数据迁移。这个是很痛苦的事情。有些小公司可以接受晚上停机迁移,但大公司是不允许停机做数据迁移的。
当然做数据迁移可以结合自己的公司的业务,做一个工具进行,不过也带来了很多工作量,每次扩容都要做数据迁移
那有没有不需要做数据迁移的方案呢,我们看下面的方案
2、range范围方案
range方案也就是以范围进行拆分数据。

range方案比较简单,就是把一定范围内的订单,存放到一个表中;如上图id=12放到0表中,id=1300万的放到1表中。设计这个方案时就是前期把表的范围设计好。通过id进行路由存放。

  • 优点

我们小伙伴们想一下,此方案是不是有利于将来的扩容,不需要做数据迁移。即时再增加4张表,之前的4张表的范围不需要改变,id=12的还是在0表,id=1300万的还是在1表,新增的4张表他们的范围肯定是 大于 4000万之后的范围划分的。

  • 缺点

有热点问题,我们想一下,因为id的值会一直递增变大,那这段时间的订单是不是会一直在某一张表中,如id=1000万 ~ id=2000万之间,这段时间产生的订单是不是都会集中到此张表中,这个就导致1表过热,压力过大,而其他的表没有什么压力。
3、总结:
hash取模方案:没有热点问题,但扩容迁移数据痛苦
range方案:不需要迁移数据,但有热点问题。
那有什么方案可以做到两者的优点结合呢?,即不需要迁移数据,又能解决数据热点的问题呢?
其实还有一个现实需求,能否根据服务器的性能以及存储高低,适当均匀调整存储呢?
三、方案思路

hash是可以解决数据均匀的问题,range可以解决数据迁移问题,那我们可以不可以两者相结合呢?利用这两者的特性呢?

我们考虑一下数据的扩容代表着,路由key(如id)的值变大了,这个是一定的,那我们先保证数据变大的时候,首先用range方案让数据落地到一个范围里面。这样以后id再变大,那以前的数据是不需要迁移的。
但又要考虑到数据均匀,那是不是可以在一定的范围内数据均匀的呢?因为我们每次的扩容肯定会事先设计好这次扩容的范围大小,我们只要保证这次的范围内的数据均匀是不是就ok了。
四、方案设计

我们先定义一个group组概念,这组里面包含了一些分库以及分表,如下图

上图有几个关键点:

  1. id=0~4000万肯定落到group01组中
  2. group01组有3个DB,那一个id如何路由到哪个DB?
  3. 根据hash取模定位DB,那模数为多少?模数要为所有此group组DB中的表数,上图总表数为10。为什么要去表的总数?而不是DB总数3呢?
  4. 如id=12,id%10=2;那值为2,落到哪个DB库呢?这是设计是前期设定好的,那怎么设定的呢?

一旦设计定位哪个DB后,就需要确定落到DB中的哪张表呢?

五、核心主流程

按照上面的流程,我们就可以根据此规则,定位一个id,我们看看有没有避免热点问题。

我们看一下,id在【0,1000万】范围内的,根据上面的流程设计,1000万以内的id都均匀的分配到DB_0,DB_1,DB_2三个数据库中的Table_0表中,为什么可以均匀,因为我们用了hash的方案,对10进行取模。
上面我们也提了疑问,为什么对表的总数10取模,而不是DB的总数3进行取模?我们看一下为什么DB_0是4张表,其他两个DB_1是3张表?
在我们安排服务器时,有些服务器的性能高,存储高,就可以安排多存放些数据,有些性能低的就少放点数据。如果我们取模是按照DB总数3,进行取模,那就代表着【0,4000万】的数据是平均分配到3个DB中的,那就不能够实现按照服务器能力适当分配了。
按照Table总数10就能够达到,看如何达到

上图中我们对10进行取模,如果值为【0,1,2,3】就路由到DB_0,【4,5,6】路由到DB_1,【7,8,9】路由到DB_2。现在小伙伴们有没有理解,这样的设计就可以把多一点的数据放到DB_0中,其他2个DB数据量就可以少一点。DB_0承担了4/10的数据量,DB_1承担了3/10的数据量,DB_2也承担了3/10的数据量。整个Group01承担了【0,4000万】的数据量。
注意:千万不要被DB_1或DB_2中table的范围也是0~4000万疑惑了,这个是范围区间,也就是id在哪些范围内,落地到哪个表而已。
上面一大段的介绍,就解决了热点的问题,以及可以按照服务器指标,设计数据量的分配

六、如何扩容

其实上面设计思路理解了,扩容就已经出来了;那就是扩容的时候再设计一个group02组,定义好此group的数据范围就ok了。

因为是新增的一个group01组,所以就没有什么数据迁移概念,完全是新增的group组,而且这个group组照样就防止了热点,也就是【4000万,5500万】的数据,都均匀分配到三个DB的table_0表中,【5500万~7000万】数据均匀分配到table_1表中。

七、系统设计

思路确定了,设计是比较简单的,就3张表,把group,DB,table之间建立好关联关系就行了。

group和DB的关系

table和db的关系
上面的表关联其实是比较简单的,只要原理思路理顺了,就ok了。小伙伴们在开发的时候不要每次都去查询三张关联表,可以保存到缓存中(本地jvm缓存),这样不会影响性能。
一旦需要扩容,小伙伴是不是要增加一下group02关联关系,那应用服务需要重新启动吗?

简单点的话,就凌晨配置,重启应用服务就行了。但如果是大型公司,是不允许的,因为凌晨也有订单的。那怎么办呢?本地jvm缓存怎么更新呢?
其实方案也很多,可以使用用zookeeper,也可以使用分布式配置,这里是比较推荐使用分布式配置中心的,可以将这些数据配置到分布式配置中心去!
到此为止,整体的方案介绍结束,希望对您有所帮助!!!

---------------------------------------------------------

来源:知乎

作者:java架构交流

原文:https://zhuanlan.zhihu.com/p/63770335

原文地址:https://www.cnblogs.com/ryelqy/p/10771876.html

时间: 2024-10-01 21:36:13

分库分表?如何做到永不迁移数据和避免热点?的相关文章

[转]一种可以避免数据迁移的分库分表scale-out扩容方式

原文地址:http://jm-blog.aliapp.com/?p=590 目前绝大多数应用采取的两种分库分表规则 mod方式 dayofweek系列日期方式(所有星期1的数据在一个库/表,或所有?月份的数据在一个库表) 这两种方式有个本质的特点,就是离散性加周期性. 例如以一个表的主键对3取余数的方式分库或分表: 那么随着数据量的增大,每个表或库的数据量都是各自增长.当一个表或库的数据量增长到了一个极限,要加库或加表的时候, 介于这种分库分表算法的离散性,必需要做数据迁移才能完成.例如从3个扩

【MySQL】MySQL中针对大数据量常用技术_创建索引+缓存配置+分库分表+子查询优化(转载)

原文地址:http://blog.csdn.net/zwan0518/article/details/11972853 目录(?)[-] 一查询优化 1创建索引 2缓存的配置 3slow_query_log分析 4分库分表 5子查询优化 二数据转移 21插入数据 如今随着互联网的发展,数据的量级也是撑指数的增长,从GB到TB到PB.对数据的各种操作也是愈加的困难,传统的关系性数据库已经无法满足快速查询与插入数据的需求.这个时候NoSQL的出现暂时解决了这一危机.它通过降低数据的安全性,减少对事务

数据库(分库分表)中间件对比

转自:http://www.cnblogs.com/cangqiongbingchen/p/7094822.html 分区:对业务透明,分区只不过把存放数据的文件分成了许多小块,例如mysql中的一张表对应三个文件.MYD,MYI,frm. 根据一定的规则把数据文件(MYD)和索引文件(MYI)进行了分割,分区后的表呢,还是一张表.分区可以把表分到不同的硬盘上,但不能分配到不同服务器上. 优点:数据不存在多个副本,不必进行数据复制,性能更高. 缺点:分区策略必须经过充分考虑,避免多个分区之间的数

海量数据存储--分库分表策略详解 (转)

一.背景:     系统刚开始的时候,数据库都是单库单表结构.随着业务量的增加进行第一次数据库升级,根据业务垂直拆分数据库,这样多变成多个业务数据库,每个数据库里面还是单表结构.接下来,继续随着业务量的继续增加,单表已经很难承受数据量,就要进行分表,这个时候就是,多个业务库,每个业务库下对需要分表的表进行分表.再接下来,随着应用的增加,数据库IO,磁盘等等都抗不住了,就要把分表的表分到多个库,这样就形成了如下的结构. 重点:本文主要讨论的是分库分表的策略,也就是分库分表的规则或者说是算法. 二.

数据库-数据库设计-分库分表

为什么要分库分表 分库分表的设计 带来的问题 扩容 分布式事务 多个路由字段怎么设置 关于分库分表最全的一篇文章 这里介绍设计分库分表框架时应该考虑的设计要点,并给出相应的解决方案. 一.整体的切分方式 简单来说,数据的切分就是通过某种特定的条件,将我们存放在同一个数据库中的数据分散存放到多个数据库(主机)中,以达到分散单台设备负载的效果,即分库分表. 数据的切分根据其切分规则的类型,可以分为如下两种切分模式. 垂直(纵向)切分:把单一的表拆分成多个表,并分散到不同的数据库(主机)上. 水平(横

MySQL分库分表之MyCat实现

分库分表之MyCat实现 分库分表介绍 分库分表就是为了解决由于数据量过大而导致数据库性能降低的问题,将原来独立的数据库拆分成若干数据库组成,将数据大表分成若干数据表组成,使得单一数据库.单一数据表的数据量变小,从而达到提升数据库性能的目的.随着微服务这种架构的兴起,我们应用从一个完整的大的应用,切分为很多可以独立提供服务的小应用.每个应用都有独立的数据库. 数据的切分分为两种: l 垂直切分:按照业务模块进行切分,将不同模块的表切分到不同的数据库中. l 水平切分:将一张大表按照一定的切分规则

数据库为什么要分库分表

1 基本思想之什么是分库分表?从字面上简单理解,就是把原本存储于一个库的数据分块存储到多个库上,把原本存储于一个表的数据分块存储到多个表上.2 基本思想之为什么要分库分表? 数据库中的数据量不一定是可控的,在未进行分库分表的情况下,随着时间和业务的发展,库中的表会越来越多,表中的数据量也会越来越大,相应地,数据操作,增删改查的开销也会越来越大:另外,由于无法进行分布式式部署,而一台服务器的资源(CPU.磁盘.内存.IO等)是有限的,最终数据库所能承载的数据量.数据处理能力都将遭遇瓶颈.3 分库分

MYSQL分库分表

1 基本思想之什么是分库分表? 从字面上简单理解,就是把原本存储于一个库的数据分块存储到多个库上,把原本存储于一个表的数据分块存储到多个表上. 2 基本思想之为什么要分库分表? 数据库中的数据量不一定是可控的,在未进行分库分表的情况下,随着时间和业务的发展,库中的表会越来越多,表中的数据量也会越来越大,相应地,数据 操作,增删改查的开销也会越来越大:另外,由于无法进行分布式式部署,而一台服务器的资源(CPU.磁盘.内存.IO等)是有限的,最终数据库所能承载的 数据量.数据处理能力都将遭遇瓶颈.

【转】MySQL使用为什么要分库分表

1 基本思想之什么是分库分表? 从字面上简单理解,就是把原本存储于一个库的数据分块存储到多个库上,把原本存储于一个表的数据分块存储到多个表上. 2 基本思想之为什么要分库分表? 数据库中的数据量不一定是可控的,在未进行分库分表的情况下,随着时间和业务的发展,库中的表会越来越多,表中的数据量也会越来越大,相应地,数据操作,增删改查的开销也会越来越大:另外,由于无法进行分布式式部署,而一台服务器的资源(CPU.磁盘.内存.IO等)是有限的,最终数据库所能承载的数据量.数据处理能力都将遭遇瓶颈. 3